Perera Wilmer H, Avula Bharathi, Khan Ikhlas A, McChesney James D
Ironstone Separations, Inc., Etta, Oxford, MS, 38627, USA.
National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, 38677, USA.
Rapid Commun Mass Spectrom. 2017 Feb 15;31(3):315-324. doi: 10.1002/rcm.7784.
Steviol glycosides with an ent-kaurene core are being used in the Food Industry as non-caloric sweeteners. These compounds are chemically similar in terms of sugar types and sugar arrangements. In order to assign sugar positions, we describe herein the dissociation pattern for steviol glycosides under varying collision energies.
Steviol glycosides (1 mg/mL, 2 μL) were automatically injected into the mass spectrometer by direct infusion using a 100-well tray autosampler. The mass spectrometric analysis was performed using a quadrupole time-of-flight (QTOF) tandem mass spectrometer (model #G6530A; Agilent Technologies, Palo Alto, CA, USA) equipped with an electrospray ionization (ESI) source with Jet Stream technology.
Dissociation of several natural and prepared steviol glycosides was carefully studied by ESI-QTOF-MS/MS using a range of collision energies: 10, 20, 30, 40, 50, 60, 70 and 80 eV. This procedure allowed us to establish the dissociation pattern for steviol glycosides, and thus the sugar arrangement in the branched oligosaccharide portion linked at position C-13 of steviol, and also infer the sugar arrangement at C-19.
Those steviol glycosides with a monosaccharide or less hindered disaccharides at position C-19 are cleaved at low collision energy (10 eV) while highly hindered disaccharides and trisaccharides are cleaved at 40 eV. However, sugars attached at C-13 cleave at highest collision energies in the following order: the C-3 sugar, followed by the C-2 sugar and finally the sugar directly linked at C-13. Copyright © 2016 John Wiley & Sons, Ltd.
具有对映-贝壳杉烯核心的甜菊糖苷正被食品工业用作无热量甜味剂。这些化合物在糖的类型和糖的排列方面在化学上相似。为了确定糖的位置,我们在此描述了甜菊糖苷在不同碰撞能量下的解离模式。
使用100孔托盘自动进样器通过直接进样将甜菊糖苷(1mg/mL,2μL)自动注入质谱仪。质谱分析使用配备有采用喷射流技术的电喷雾电离(ESI)源的四极杆飞行时间(QTOF)串联质谱仪(型号#G6530A;美国加利福尼亚州帕洛阿尔托市安捷伦科技公司)进行。
通过ESI-QTOF-MS/MS使用一系列碰撞能量:10、20、30、40、50、60、70和80eV,仔细研究了几种天然和制备的甜菊糖苷的解离。该程序使我们能够确定甜菊糖苷的解离模式,从而确定连接在甜菊醇C-13位的支链寡糖部分中的糖排列,并且还能推断C-19位的糖排列。
那些在C-19位具有单糖或较少受阻二糖的甜菊糖苷在低碰撞能量(10eV)下裂解,而高度受阻的二糖和三糖在40eV下裂解。然而,连接在C-13位的糖在最高碰撞能量下按以下顺序裂解:C-3糖,其次是C-2糖,最后是直接连接在C-13位的糖。版权所有©2016约翰威立父子有限公司。