Suppr超能文献

基于信息量选择的单核苷酸多态性(SNP)比随机选择的微卫星标记在界定濒危的深色欧洲蜜蜂(Apis mellifera mellifera)的遗传识别和基因渐渗方面表现更优。

SNPs selected by information content outperform randomly selected microsatellite loci for delineating genetic identification and introgression in the endangered dark European honeybee (Apis mellifera mellifera).

机构信息

Mountain Research Centre (CIMO), Polytechnic Institute of Bragança, Campus de Sta. Apolónia, Apartado 1172, 5301-855, Bragança, Portugal.

Área de Biología Animal, Dpto. de Zoología y Antropología Física, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain.

出版信息

Mol Ecol Resour. 2017 Jul;17(4):783-795. doi: 10.1111/1755-0998.12637. Epub 2016 Dec 26.

Abstract

The honeybee (Apis mellifera) has been threatened by multiple factors including pests and pathogens, pesticides and loss of locally adapted gene complexes due to replacement and introgression. In western Europe, the genetic integrity of the native A. m. mellifera (M-lineage) is endangered due to trading and intensive queen breeding with commercial subspecies of eastern European ancestry (C-lineage). Effective conservation actions require reliable molecular tools to identify pure-bred A. m. mellifera colonies. Microsatellites have been preferred for identification of A. m. mellifera stocks across conservation centres. However, owing to high throughput, easy transferability between laboratories and low genotyping error, SNPs promise to become popular. Here, we compared the resolving power of a widely utilized microsatellite set to detect structure and introgression with that of different sets that combine a variable number of SNPs selected for their information content and genomic proximity to the microsatellite loci. Contrary to every SNP data set, microsatellites did not discriminate between the two lineages in the PCA space. Mean introgression proportions were identical across the two marker types, although at the individual level, microsatellites' performance was relatively poor at the upper range of Q-values, a result reflected by their lower precision. Our results suggest that SNPs are more accurate and powerful than microsatellites for identification of A. m. mellifera colonies, especially when they are selected by information content.

摘要

蜜蜂(Apis mellifera)受到多种因素的威胁,包括害虫和病原体、杀虫剂以及由于替代和渗入而丧失本地适应的基因复合物。在西欧,由于与东欧起源的商业亚种(C 系)进行交易和密集的蜂王繁殖,本地 A. m. mellifera(M 系)的遗传完整性受到威胁。有效的保护行动需要可靠的分子工具来识别纯种的 A. m. mellifera 群体。微卫星已被优先用于识别各地保护中心的 A. m. mellifera 种群。然而,由于高通量、易于在实验室之间转移以及低基因分型错误,SNP 有望变得流行。在这里,我们比较了广泛使用的微卫星集在检测结构和渗入方面的分辨率,以及结合了不同数量的 SNP 的集合,这些 SNP 是根据其信息含量和与微卫星位点的基因组接近度选择的。与每个 SNP 数据集相反,微卫星在 PCA 空间中不能区分两个谱系。两种标记类型的平均渗入比例相同,尽管在个体水平上,微卫星在 Q 值的上限范围内表现相对较差,这一结果反映了它们较低的精度。我们的结果表明,SNP 比微卫星更准确、更强大,用于识别 A. m. mellifera 群体,特别是当它们根据信息含量选择时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验