Suppr超能文献

战斗还是逃跑?——逃跑会增加免疫基因表达,但无助于对抗感染。

Fight or flight? - Flight increases immune gene expression but does not help to fight an infection.

作者信息

Woestmann L, Kvist J, Saastamoinen M

机构信息

Metapopulation Research Centre, University of Helsinki, Helsinki, Finland.

Institute of Biotechnology, University of Helsinki, Helsinki, Finland.

出版信息

J Evol Biol. 2017 Mar;30(3):501-511. doi: 10.1111/jeb.13007. Epub 2016 Nov 19.

Abstract

Flight represents a key trait in most insects, being energetically extremely demanding, yet often necessary for foraging and reproduction. Additionally, dispersal via flight is especially important for species living in fragmented landscapes. Even though, based on life-history theory, a negative relationship may be expected between flight and immunity, a number of previous studies have indicated flight to induce an increased immune response. In this study, we assessed whether induced immunity (i.e. immune gene expression) in response to 15-min forced flight treatment impacts individual survival of bacterial infection in the Glanville fritillary butterfly (Melitaea cinxia). We were able to confirm previous findings of flight-induced immune gene expression, but still observed substantially stronger effects on both gene expression levels and life span due to bacterial infection compared to flight treatment. Even though gene expression levels of some immunity-related genes were elevated due to flight, these individuals did not show increased survival of bacterial infection, indicating that flight-induced immune activation does not completely protect them from the negative effects of bacterial infection. Finally, an interaction between flight and immune treatment indicated a potential trade-off: flight treatment increased immune gene expression in naïve individuals only, whereas in infected individuals no increase in immune gene expression was induced by flight. Our results suggest that the up-regulation of immune genes upon flight is based on a general stress response rather than reflecting an adaptive response to cope with potential infections during flight or in new habitats.

摘要

飞行是大多数昆虫的一个关键特性,它在能量方面要求极高,但对于觅食和繁殖往往又是必需的。此外,通过飞行进行扩散对于生活在破碎化景观中的物种尤为重要。尽管根据生活史理论,可能预期飞行与免疫力之间存在负相关关系,但先前的一些研究表明飞行会诱导免疫反应增强。在本研究中,我们评估了对格兰维尔豹纹蝶(Melitaea cinxia)进行15分钟强迫飞行处理后诱导的免疫(即免疫基因表达)是否会影响个体在细菌感染中的存活情况。我们能够证实先前关于飞行诱导免疫基因表达的研究结果,但与飞行处理相比,仍观察到细菌感染对基因表达水平和寿命的影响要大得多。尽管由于飞行,一些与免疫相关的基因表达水平有所升高,但这些个体在细菌感染中的存活率并未提高,这表明飞行诱导的免疫激活并不能完全保护它们免受细菌感染的负面影响。最后,飞行与免疫处理之间的相互作用表明存在一种潜在的权衡:飞行处理仅在未感染个体中增加免疫基因表达,而在已感染个体中,飞行并未诱导免疫基因表达增加。我们的结果表明,飞行时免疫基因的上调是基于一般应激反应,而不是反映一种适应性反应,以应对飞行期间或新栖息地中的潜在感染。

相似文献

1
Fight or flight? - Flight increases immune gene expression but does not help to fight an infection.
J Evol Biol. 2017 Mar;30(3):501-511. doi: 10.1111/jeb.13007. Epub 2016 Nov 19.
2
Flight-induced changes in gene expression in the Glanville fritillary butterfly.
Mol Ecol. 2015 Oct;24(19):4886-900. doi: 10.1111/mec.13359.
4
Transcriptome analysis reveals signature of adaptation to landscape fragmentation.
PLoS One. 2014 Jul 2;9(7):e101467. doi: 10.1371/journal.pone.0101467. eCollection 2014.
5
Dispersal-related life-history trade-offs in a butterfly metapopulation.
J Anim Ecol. 2006 Jan;75(1):91-100. doi: 10.1111/j.1365-2656.2005.01024.x.
6
Effects of flight and food stress on energetics, reproduction, and lifespan in the butterfly Melitaea cinxia.
Oecologia. 2019 Oct;191(2):271-283. doi: 10.1007/s00442-019-04489-8. Epub 2019 Aug 22.
7
Flight metabolic rate has contrasting effects on dispersal in the two sexes of the Glanville fritillary butterfly.
Oecologia. 2011 Apr;165(4):847-54. doi: 10.1007/s00442-010-1886-8. Epub 2010 Dec 29.
8
Viral exposure effects on life-history, flight-related traits, and wing melanisation in the Glanville fritillary butterfly.
J Insect Physiol. 2018 May-Jun;107:136-143. doi: 10.1016/j.jinsphys.2018.03.009. Epub 2018 Apr 5.
9
Oxygen and energy availability interact to determine flight performance in the Glanville fritillary butterfly.
J Exp Biol. 2016 May 15;219(Pt 10):1488-94. doi: 10.1242/jeb.138180. Epub 2016 Mar 4.
10
Differences in the aerobic capacity of flight muscles between butterfly populations and species with dissimilar flight abilities.
PLoS One. 2014 Jan 8;9(1):e78069. doi: 10.1371/journal.pone.0078069. eCollection 2014.

引用本文的文献

2
Special Significance of Non- Insects in Aging.
Front Cell Dev Biol. 2020 Sep 22;8:576571. doi: 10.3389/fcell.2020.576571. eCollection 2020.
3
The gut bacterial community affects immunity but not metabolism in a specialist herbivorous butterfly.
Ecol Evol. 2020 Jul 16;10(16):8755-8769. doi: 10.1002/ece3.6573. eCollection 2020 Aug.
4
Animals have a Plan B: how insects deal with the dual challenge of predators and pathogens.
J Comp Physiol B. 2020 Jul;190(4):381-390. doi: 10.1007/s00360-020-01282-5. Epub 2020 Jun 11.
6
Life history alterations upon oral and hemocoelic bacterial exposure in the butterfly .
Ecol Evol. 2019 Aug 28;9(18):10665-10680. doi: 10.1002/ece3.5586. eCollection 2019 Sep.
7
Effects of flight and food stress on energetics, reproduction, and lifespan in the butterfly Melitaea cinxia.
Oecologia. 2019 Oct;191(2):271-283. doi: 10.1007/s00442-019-04489-8. Epub 2019 Aug 22.
8
Diet modulates the relationship between immune gene expression and functional immune responses.
Insect Biochem Mol Biol. 2019 Jun;109:128-141. doi: 10.1016/j.ibmb.2019.04.009. Epub 2019 Apr 5.
9
Moderate plant water stress improves larval development, and impacts immunity and gut microbiota of a specialist herbivore.
PLoS One. 2019 Feb 20;14(2):e0204292. doi: 10.1371/journal.pone.0204292. eCollection 2019.
10
Viral exposure effects on life-history, flight-related traits, and wing melanisation in the Glanville fritillary butterfly.
J Insect Physiol. 2018 May-Jun;107:136-143. doi: 10.1016/j.jinsphys.2018.03.009. Epub 2018 Apr 5.

本文引用的文献

1
Unravelling the Costs of Flight for Immune Defenses in the Migratory Monarch Butterfly.
Integr Comp Biol. 2016 Aug;56(2):278-89. doi: 10.1093/icb/icw056. Epub 2016 Jun 2.
2
Flight-induced changes in gene expression in the Glanville fritillary butterfly.
Mol Ecol. 2015 Oct;24(19):4886-900. doi: 10.1111/mec.13359.
3
Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences.
Ecol Lett. 2015 Mar;18(3):287-302. doi: 10.1111/ele.12407. Epub 2015 Jan 22.
4
Transcriptome analysis reveals signature of adaptation to landscape fragmentation.
PLoS One. 2014 Jul 2;9(7):e101467. doi: 10.1371/journal.pone.0101467. eCollection 2014.
7
The effects of the stress response on immune function in invertebrates: an evolutionary perspective on an ancient connection.
Horm Behav. 2012 Aug;62(3):324-30. doi: 10.1016/j.yhbeh.2012.02.012. Epub 2012 Feb 21.
8
Costs of dispersal.
Biol Rev Camb Philos Soc. 2012 May;87(2):290-312. doi: 10.1111/j.1469-185X.2011.00201.x. Epub 2011 Sep 19.
9
Drosophila immunity: analysis of PGRP-SB1 expression, enzymatic activity and function.
PLoS One. 2011 Feb 18;6(2):e17231. doi: 10.1371/journal.pone.0017231.
10
Flight metabolic rate has contrasting effects on dispersal in the two sexes of the Glanville fritillary butterfly.
Oecologia. 2011 Apr;165(4):847-54. doi: 10.1007/s00442-010-1886-8. Epub 2010 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验