Tebben Ludger, Mück-Lichtenfeld Christian, Fernández Gustavo, Grimme Stefan, Studer Armido
Organisch-Chemisches Institut, Westfälische Wilhelms Universität Münster, Corrensstraße 40, 48149, Münster, Germany.
Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany.
Chemistry. 2017 May 2;23(25):5864-5873. doi: 10.1002/chem.201604651. Epub 2016 Dec 30.
Cooperative effects can be observed in various research areas in chemistry; cooperative catalysis is well-established, the assembly of compounds on surfaces can be steered by cooperative effects, and supramolecular polymerization can proceed in a cooperative manner. In biological systems, cooperativity is observed in protein-protein, protein-lipid and protein-molecule interactions. Synergistic effects are relevant in frustrated Lewis pairs, organic multispin systems, multimetallic clusters and also in nanoparticles. However, a general approach to determine cooperativity in the different chemical systems is currently not known. In the present concept paper it is suggested that, at least for simpler systems that can be described at the molecular level, cooperativity can be defined based on energy considerations. For systems in which no chemical transformation occurs, determination of interaction energies of the whole system with respect to the interaction energies between all individual component pairs (subsystems) will allow determination of cooperativity. For systems comprising of chemical transformations, cooperativity can be evaluated by determining the activation energy of the synergistic system and by comparing this with activation energies of the corresponding subsystems that lack an activating moiety. For more complex systems, cooperativity is generally determined at a qualitative level.
协同效应在化学的各个研究领域都能观察到;协同催化已得到充分确立,表面上化合物的组装可通过协同效应来引导,超分子聚合也能以协同方式进行。在生物系统中,协同性见于蛋白质 - 蛋白质、蛋白质 - 脂质和蛋白质 - 分子相互作用中。协同效应在受阻路易斯酸碱对、有机多自旋体系、多金属簇以及纳米颗粒中也很重要。然而,目前尚不存在一种确定不同化学体系中协同性的通用方法。在本概念文件中,建议至少对于可在分子水平描述的较简单体系,协同性可基于能量考量来定义。对于不发生化学转化的体系,确定整个体系的相互作用能相对于所有单个组分对(子体系)之间的相互作用能,将有助于确定协同性。对于包含化学转化的体系,协同性可通过确定协同体系的活化能并将其与缺乏活化部分的相应子体系的活化能进行比较来评估。对于更复杂的体系,协同性通常在定性层面确定。