Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, CA, 94720, USA.
Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
Glob Chang Biol. 2017 Jul;23(7):2768-2782. doi: 10.1111/gcb.13580. Epub 2017 Jan 7.
Wetlands can influence global climate via greenhouse gas (GHG) exchange of carbon dioxide (CO ), methane (CH ), and nitrous oxide (N O). Few studies have quantified the full GHG budget of wetlands due to the high spatial and temporal variability of fluxes. We report annual open-water diffusion and ebullition fluxes of CO , CH , and N O from a restored emergent marsh ecosystem. We combined these data with concurrent eddy-covariance measurements of whole-ecosystem CO and CH exchange to estimate GHG fluxes and associated radiative forcing effects for the whole wetland, and separately for open-water and vegetated cover types. Annual open-water CO , CH , and N O emissions were 915 ± 95 g C-CO m yr , 2.9 ± 0.5 g C-CH m yr , and 62 ± 17 mg N-N O m yr , respectively. Diffusion dominated open-water GHG transport, accounting for >99% of CO and N O emissions, and ~71% of CH emissions. Seasonality was minor for CO emissions, whereas CH and N O fluxes displayed strong and asynchronous seasonal dynamics. Notably, the overall radiative forcing of open-water fluxes (3.5 ± 0.3 kg CO -eq m yr ) exceeded that of vegetated zones (1.4 ± 0.4 kg CO -eq m yr ) due to high ecosystem respiration. After scaling results to the entire wetland using object-based cover classification of remote sensing imagery, net uptake of CO (-1.4 ± 0.6 kt CO -eq yr ) did not offset CH emission (3.7 ± 0.03 kt CO -eq yr ), producing an overall positive radiative forcing effect of 2.4 ± 0.3 kt CO -eq yr . These results demonstrate clear effects of seasonality, spatial structure, and transport pathway on the magnitude and composition of wetland GHG emissions, and the efficacy of multiscale flux measurement to overcome challenges of wetland heterogeneity.
湿地可以通过二氧化碳(CO )、甲烷(CH )和氧化亚氮(N O)的温室气体(GHG)交换来影响全球气候。由于通量的高度时空变异性,很少有研究能够量化湿地的完整 GHG 预算。我们报告了一个恢复后的沼泽湿地生态系统的开阔水面扩散和鼓泡通量的年度数据,这些数据包括 CO 、CH 和 N O。我们将这些数据与同期整个生态系统 CO 和 CH 交换的涡度协方差测量相结合,以估算整个湿地以及开阔水面和植被覆盖类型的 GHG 通量和相关的辐射强迫效应。湿地每年的开阔水面 CO 、CH 和 N O 排放量分别为 915±95 g C-CO m - yr 、2.9±0.5 g C-CH m - yr 和 62±17 mg N-N O m - yr 。扩散主导了开阔水面 GHG 的传输,占 CO 和 N O 排放量的>99%,占 CH 排放量的~71%。CO 排放的季节性较小,而 CH 和 N O 通量表现出强烈而不同步的季节性动态。值得注意的是,由于生态系统呼吸作用较强,开阔水面通量的总辐射强迫(3.5±0.3 kg CO -eq m - yr )超过了植被区的总辐射强迫(1.4±0.4 kg CO -eq m - yr )。通过使用遥感图像的基于对象的覆盖分类将结果扩展到整个湿地,CO 的净吸收量(-1.4±0.6 kt CO -eq yr )没有抵消 CH 的排放量(3.7±0.03 kt CO -eq yr ),产生了 2.4±0.3 kt CO -eq yr 的总正辐射强迫效应。这些结果表明,季节性、空间结构和传输途径对湿地 GHG 排放的幅度和组成有明显影响,多尺度通量测量克服湿地异质性挑战的效果。