IEEE Trans Neural Netw Learn Syst. 2018 Feb;29(2):364-376. doi: 10.1109/TNNLS.2016.2627083. Epub 2016 Nov 24.
This paper considers a complex dynamical network model, in which the input and output vectors have different dimensions. We, respectively, investigate the passivity and the relationship between output strict passivity and output synchronization of the complex dynamical network with fixed and adaptive coupling strength. First, two new passivity definitions are proposed, which generalize some existing concepts of passivity. By constructing appropriate Lyapunov functional, some sufficient conditions ensuring the passivity, input strict passivity and output strict passivity are derived for the complex dynamical network with fixed coupling strength. In addition, we also reveal the relationship between output strict passivity and output synchronization of the complex dynamical network with fixed coupling strength. By employing the relationship between output strict passivity and output synchronization, a sufficient condition for output synchronization of the complex dynamical network with fixed coupling strength is established. Then, we extend these results to the case when the coupling strength is adaptively adjusted. Finally, two examples with numerical simulations are provided to demonstrate the effectiveness of the proposed criteria.
本文考虑了一个具有不同维数输入和输出向量的复杂动力网络模型。我们分别研究了具有固定和自适应耦合强度的复杂动力网络的被动性以及输出严格被动性和输出同步之间的关系。首先,提出了两个新的被动性定义,这些定义推广了一些现有的被动性概念。通过构造适当的 Lyapunov 泛函,为具有固定耦合强度的复杂动力网络推导了保证被动性、输入严格被动性和输出严格被动性的一些充分条件。此外,还揭示了具有固定耦合强度的复杂动力网络的输出严格被动性和输出同步之间的关系。通过利用输出严格被动性和输出同步之间的关系,建立了具有固定耦合强度的复杂动力网络的输出同步的充分条件。然后,将这些结果推广到耦合强度自适应调整的情况。最后,通过两个数值仿真示例验证了所提出准则的有效性。