Wilson Bryan A, Cruz-Diaz Nildris, Su Yixin, Rose James C, Gwathmey TanYa M, Chappell Mark C
Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina; and.
Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.
Am J Physiol Renal Physiol. 2017 May 1;312(5):F879-F886. doi: 10.1152/ajprenal.00246.2016. Epub 2016 Nov 30.
The renal proximal tubules are a key functional component of the kidney and express the angiotensin precursor angiotensinogen; however, it is unclear the extent that tubular angiotensinogen reflects local synthesis or internalization. Therefore, the current study established the extent to which angiotensinogen is internalized by proximal tubules and the intracellular distribution. Proximal tubules were isolated from the kidney cortex of male sheep by enzymatic digestion and a discontinuous Percoll gradient. Tubules were incubated with radiolabeled I-angiotensinogen for 2 h at 37°C in serum/phenol-free DMEM/F12 media. Approximately 10% of exogenous I-angiotensinogen was internalized by sheep tubules. Subcellular fractionation revealed that 21 ± 4% of the internalized I-angiotensinogen associated with the mitochondrial fraction with additional labeling evident in the nucleus (60 ± 7%), endoplasmic reticulum (4 ± 0.5%), and cytosol (15 ± 4%; = 4). Subsequent studies determined whether mitochondria directly internalized I-angiotensinogen using isolated mitochondria from renal cortex and human HK-2 proximal tubule cells. Sheep cortical and HK-2 mitochondria internalized I-angiotensinogen at a comparable rate of (33 ± 9 vs. 21 ± 10 pmol·min·mg protein; = 3). Lastly, unlabeled angiotensinogen (100 nM) competed for I-angiotensinogen uptake to a greater extent than human albumin in HK-2 mitochondria (60 ± 2 vs. 16 ± 13%; < 0.05, = 3). Collectively, our data demonstrate angiotensinogen import and subsequent trafficking to the mitochondria in proximal tubules. We conclude that this pathway may constitute a source of the angiotensinogen precursor for the mitochondrial expression of angiotensin peptides.
肾近端小管是肾脏的关键功能组成部分,可表达血管紧张素前体血管紧张素原;然而,尚不清楚肾小管血管紧张素原反映局部合成或内化的程度。因此,本研究确定了近端小管内化血管紧张素原的程度以及细胞内分布情况。通过酶消化和不连续的 Percoll 梯度从雄性绵羊的肾皮质中分离出近端小管。将小管在无血清/酚的 DMEM/F12 培养基中于 37°C 与放射性标记的 I-血管紧张素原孵育 2 小时。约 10% 的外源性 I-血管紧张素原被绵羊小管内化。亚细胞分级分离显示,21±4% 的内化 I-血管紧张素原与线粒体部分相关,在细胞核(60±7%)、内质网(4±0.5%)和胞质溶胶(15±4%;n = 4)中也有额外的标记。随后的研究使用从肾皮质和人 HK-2 近端小管细胞分离的线粒体,确定线粒体是否直接内化 I-血管紧张素原。绵羊皮质和 HK-2 线粒体以相当的速率内化 I-血管紧张素原(33±9 对 21±10 pmol·min·mg 蛋白;n = 3)。最后,在 HK-2 线粒体中,未标记的血管紧张素原(100 nM)比人白蛋白更能竞争性抑制 I-血管紧张素原的摄取(60±2 对 16±13%;P < 0.05,n = 3)。总体而言,我们的数据表明血管紧张素原可被近端小管摄取并随后运输至线粒体。我们得出结论,该途径可能构成线粒体中血管紧张素肽表达的血管紧张素原前体来源。