Suppr超能文献

不同吸附剂及铁(III)盐对水中砷(V)的吸附特性

Adsorption Characteristics of Different Adsorbents and Iron(III) Salt for Removing As(V) from Water.

作者信息

Ćurko Josip, Matošić Marin, Crnek Vlado, Stulić Višnja, Mijatović Ivan

机构信息

Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6,
HR-10000 Zagreb, Croatia.

出版信息

Food Technol Biotechnol. 2016 Jun;54(2):250-255. doi: 10.17113/ftb.54.02.16.4064.

Abstract

The aim of this study is to determine the adsorption performance of three types of adsorbents for removal of As(V) from water: Bayoxide E33 (granular iron(III) oxide), Titansorb (granular titanium oxide) and a suspension of precipitated iron(III) hydroxide. Results of As(V) adsorption stoichiometry of two commercial adsorbents and precipitated iron(III) hydroxide in tap and demineralized water were fitted to Freundlich and Langmuir adsorption isotherm equations, from which adsorption constants and adsorption capacity were calculated. The separation factor for the three adsorbents ranged from 0.04 to 0.61, indicating effective adsorption. Precipitated iron(III) hydroxide had the greatest, while Titansorb had the lowest capacity to adsorb As(V). Comparison of adsorption from tap or demineralized water showed that Bayoxide and precipitated iron(III) hydroxide had higher adsorption capacity in demineralized water, whereas Titansorb showed a slightly higher capacity in tap water. These results provide mechanistic insights into how commonly used adsorbents remove As(V) from water.

摘要

本研究的目的是确定三种吸附剂从水中去除五价砷(As(V))的吸附性能:Bayoxide E33(粒状三氧化二铁)、Titansorb(粒状二氧化钛)和沉淀氢氧化铁悬浮液。将两种商业吸附剂以及沉淀氢氧化铁在自来水和去离子水中对As(V)的吸附化学计量结果拟合到Freundlich和Langmuir吸附等温线方程,由此计算吸附常数和吸附容量。三种吸附剂的分离因子在0.04至0.61之间,表明吸附效果良好。沉淀氢氧化铁的吸附容量最大,而Titansorb吸附As(V)的容量最低。对来自自来水或去离子水的吸附情况进行比较表明,Bayoxide和沉淀氢氧化铁在去离子水中具有更高的吸附容量,而Titansorb在自来水中的吸附容量略高。这些结果为常用吸附剂如何从水中去除As(V)提供了机理见解。

相似文献

1
Adsorption Characteristics of Different Adsorbents and Iron(III) Salt for Removing As(V) from Water.
Food Technol Biotechnol. 2016 Jun;54(2):250-255. doi: 10.17113/ftb.54.02.16.4064.
2
Iron coated pottery granules for arsenic removal from drinking water.
J Hazard Mater. 2009 Sep 15;168(2-3):626-32. doi: 10.1016/j.jhazmat.2009.02.168. Epub 2009 Mar 17.
3
Synthesis of nano-scale zero-valent iron-reduced graphene oxide-silica nano-composites for the efficient removal of arsenic from aqueous solutions.
Environ Sci Pollut Res Int. 2019 Nov;26(32):33507-33516. doi: 10.1007/s11356-019-06320-6. Epub 2019 Sep 16.
5
Arsenate and arsenite adsorption onto iron-coated cork granulates.
Sci Total Environ. 2018 Nov 15;642:1075-1089. doi: 10.1016/j.scitotenv.2018.06.170. Epub 2018 Jun 20.
6
Removal of arsenic(III,V) by a granular Mn-oxide-doped Al oxide adsorbent: surface characterization and performance.
Environ Sci Pollut Res Int. 2017 Aug;24(22):18505-18519. doi: 10.1007/s11356-017-9465-8. Epub 2017 Jun 23.
7
Fabrication and evaluation of silica embedded and zerovalent iron composited biochars for arsenate removal from water.
Environ Pollut. 2020 Nov;266(Pt 1):115256. doi: 10.1016/j.envpol.2020.115256. Epub 2020 Jul 16.
9
Removal of As (V) from the aqueous solution by a modified granular ferric hydroxide adsorbent.
Sci Total Environ. 2020 Mar 1;706:135947. doi: 10.1016/j.scitotenv.2019.135947. Epub 2019 Dec 5.
10
Removal of arsenic(V) from aqueous solutions using iron-oxide-coated modified activated carbon.
Water Environ Res. 2007 Aug;79(8):931-6. doi: 10.2175/106143007x156727.

引用本文的文献

1
Biochar from Grapevine Pruning Residues as an Efficient Adsorbent of Polyphenolic Compounds.
Materials (Basel). 2023 Jun 29;16(13):4716. doi: 10.3390/ma16134716.

本文引用的文献

1
Effect of calcium on adsorptive removal of As(III) and As(V) by iron oxide-based adsorbents.
Environ Technol. 2014 Nov-Dec;35(21-24):3153-64. doi: 10.1080/09593330.2014.934739. Epub 2014 Jul 11.
2
Direct removal of aqueous As(III) and As(V) by amorphous titanium dioxide nanotube arrays.
Environ Technol. 2013 Jul-Aug;34(13-16):2285-90. doi: 10.1080/09593330.2013.765923.
4
Application of titanium dioxide in arsenic removal from water: A review.
J Hazard Mater. 2012 May 15;215-216:1-16. doi: 10.1016/j.jhazmat.2012.02.069. Epub 2012 Mar 3.
5
Arsenic removal from water/wastewater using adsorbents--A critical review.
J Hazard Mater. 2007 Apr 2;142(1-2):1-53. doi: 10.1016/j.jhazmat.2007.01.006. Epub 2007 Jan 7.
6
Mechanistic modeling of arsenic retention on natural red earth in simulated environmental systems.
J Colloid Interface Sci. 2006 Feb 15;294(2):265-72. doi: 10.1016/j.jcis.2005.07.026. Epub 2005 Sep 16.
7
Removal of arsenic from groundwater by granular titanium dioxide adsorbent.
Chemosphere. 2005 Jul;60(3):389-97. doi: 10.1016/j.chemosphere.2004.12.008. Epub 2005 Jan 28.
8
Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide.
Water Res. 2005 Jun;39(11):2327-37. doi: 10.1016/j.watres.2005.04.006.
9
Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: effects of pH, temperature, and ionic strength.
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2005;40(4):723-49. doi: 10.1081/ese-200048254.
10
Adsorption of arsenate and arsenite on titanium dioxide suspensions.
J Colloid Interface Sci. 2004 Oct 15;278(2):270-5. doi: 10.1016/j.jcis.2004.06.015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验