Lin K P, Chang W H
IEEE Trans Biomed Eng. 1989 Oct;36(10):1050-5. doi: 10.1109/10.40806.
This communication proposes a method called linear prediction (a high performant technique in digital speech processing) for analyzing digital ECG signals. There are several significant properties indicating that ECG signals have an important feature in the residual error signal obtained after processing by Durbin's linear prediction algorithm. This communication also indicates that the prediction order need not be more than two for fast arrhythmia detection. The ECG signal classification puts an emphasis on the residual error signal. For each ECG's QRS complex, the feature for recognition is obtained from a nonlinear transformation which transforms every residual error signal to a set of three states pulse-code train relative to the original ECG signal. The pulse-code train has the advantage of easy implementation in digital hardware circuits to achieve automated ECG diagnosis. The algorithm performs very well in feature extraction in arrhythmia detection. Using this method, our studies indicate that the PVC (premature ventricular contraction) detection has at least a 92 percent sensitivity for MIT/BIH arrhythmia database.
本通信提出了一种称为线性预测的方法(数字语音处理中的一种高性能技术)来分析数字心电图信号。有几个重要特性表明,心电图信号在经过德宾线性预测算法处理后得到的残差信号中具有重要特征。本通信还表明,对于快速心律失常检测,预测阶数不必超过二阶。心电图信号分类强调残差信号。对于每个心电图的QRS复合波,识别特征是通过非线性变换获得的,该变换将每个残差信号相对于原始心电图信号转换为一组三个状态的脉冲编码序列。脉冲编码序列具有易于在数字硬件电路中实现以实现自动心电图诊断的优点。该算法在心律失常检测的特征提取方面表现非常出色。使用这种方法,我们的研究表明,对于麻省理工学院/贝斯以色列女执事医疗中心心律失常数据库,室性早搏(PVC)检测的灵敏度至少为92%。