Suppr超能文献

钴(III)-氢过氧络合物在亲电反应中的反应活性。

Reactivity of a Cobalt(III)-Hydroperoxo Complex in Electrophilic Reactions.

作者信息

Shin Bongki, Sutherlin Kyle D, Ohta Takehiro, Ogura Takashi, Solomon Edward I, Cho Jaeheung

机构信息

Department of Emerging Materials Science, DGIST , Daegu 42988, Korea.

Department of Chemistry, Stanford University , Stanford, California 94305, United States.

出版信息

Inorg Chem. 2016 Dec 5;55(23):12391-12399. doi: 10.1021/acs.inorgchem.6b02288. Epub 2016 Nov 15.

Abstract

The reactivity of mononuclear metal-hydroperoxo adducts has fascinated researchers in many areas due to their diverse biological and catalytic processes. In this study, a mononuclear cobalt(III)-peroxo complex bearing a tetradentate macrocyclic ligand, [Co(Me-TPADP)(O)] (Me-TPADP = 3,6,9-trimethyl-3,6,9-triaza-1(2,6)-pyridinacyclodecaphane), was prepared by reacting [Co(Me-TPADP)(CHCN)] with HO in the presence of triethylamine. Upon protonation, the cobalt(III)-peroxo intermediate was converted into a cobalt(III)-hydroperoxo complex, [Co(Me-TPADP)(OH)(CHCN)]. The mononuclear cobalt(III)-peroxo and -hydroperoxo intermediates were characterized by a variety of physicochemical methods. Results of electrospray ionization mass spectrometry clearly show the transformation of the intermediates: the peak at m/z 339.2 assignable to the cobalt(III)-peroxo species disappears with concomitant growth of the peak at m/z 190.7 corresponding to the cobalt(III)-hydroperoxo complex (with bound CHCN). Isotope labeling experiments further support the existence of the cobalt(III)-peroxo and -hydroperoxo complexes. In particular, the O-O bond stretching frequency of the cobalt(III)-hydroperoxo complex was determined to be 851 cm for OH samples (803 cm for OH samples), and its Co-O vibrational energy was observed at 571 cm for OH samples (551 cm for OH samples; 568 cm for OH samples) by resonance Raman spectroscopy. Reactivity studies performed with the cobalt(III)-peroxo and -hydroperoxo complexes in organic functionalizations reveal that the latter is capable of conducting oxygen atom transfer with an electrophilic character, whereas the former exhibits no oxygen atom transfer reactivity under the same reaction conditions. Alternatively, the cobalt(III)-hydroperoxo complex does not perform hydrogen atom transfer reactions, while analogous low-spin Fe(III)-hydroperoxo complexes are capable of this reactivity. Density functional theory calculations indicate that this lack of reactivity is due to the high free energy cost of O-O bond homolysis that would be required to produce the hypothetical Co(IV)-oxo product.

摘要

单核金属氢过氧加合物的反应活性因其多样的生物和催化过程而吸引了许多领域的研究人员。在本研究中,通过在三乙胺存在下使[Co(Me-TPADP)(CHCN)]与HO反应,制备了一种带有四齿大环配体的单核钴(III) - 过氧配合物,即[Co(Me-TPADP)(O)](Me-TPADP = 3,6,9 - 三甲基 - 3,6,9 - 三氮杂 - 1(2,6) - 吡啶并环癸烷)。质子化后,钴(III) - 过氧中间体转化为钴(III) - 氢过氧配合物,即[Co(Me-TPADP)(OH)(CHCN)]。通过多种物理化学方法对单核钴(III) - 过氧和 - 氢过氧中间体进行了表征。电喷雾电离质谱结果清楚地显示了中间体的转化:可归属于钴(III) - 过氧物种的m/z 339.2处的峰消失,同时对应于钴(III) - 氢过氧配合物(带有结合的CHCN)的m/z 190.7处的峰增长。同位素标记实验进一步支持了钴(III) - 过氧和 - 氢过氧配合物的存在。特别是,通过共振拉曼光谱测定,对于OH样品,钴(III) - 氢过氧配合物的O - O键伸缩频率为851 cm(对于OH样品为803 cm),其Co - O振动能量在对于OH样品为571 cm(对于OH样品为551 cm;对于OH样品为568 cm)处观察到。用钴(III) - 过氧和 - 氢过氧配合物进行的有机官能化反应活性研究表明,后者能够进行具有亲电性质的氧原子转移,而前者在相同反应条件下不表现出氧原子转移反应活性。另外,钴(III) - 氢过氧配合物不进行氢原子转移反应,而类似的低自旋铁(III) - 氢过氧配合物能够进行这种反应活性。密度泛函理论计算表明,这种反应活性的缺乏是由于产生假设的Co(IV) - 氧代产物所需的O - O键均裂的高自由能成本。

相似文献

1
Reactivity of a Cobalt(III)-Hydroperoxo Complex in Electrophilic Reactions.
Inorg Chem. 2016 Dec 5;55(23):12391-12399. doi: 10.1021/acs.inorgchem.6b02288. Epub 2016 Nov 15.
2
Synthetic mononuclear nonheme iron-oxygen intermediates.
Acc Chem Res. 2015 Aug 18;48(8):2415-23. doi: 10.1021/acs.accounts.5b00218. Epub 2015 Jul 23.
3
Mechanistic Insights into Nitrile Activation by Cobalt(III)-Hydroperoxo Intermediates: The Influence of Ligand Basicity.
JACS Au. 2023 Oct 31;3(11):3204-3212. doi: 10.1021/jacsau.3c00532. eCollection 2023 Nov 27.
5
Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.
Acc Chem Res. 2017 Nov 21;50(11):2706-2717. doi: 10.1021/acs.accounts.7b00343. Epub 2017 Oct 24.
6
Synthesis, structural, and spectroscopic characterization and reactivities of mononuclear cobalt(III)-peroxo complexes.
J Am Chem Soc. 2010 Dec 1;132(47):16977-86. doi: 10.1021/ja107177m. Epub 2010 Nov 9.
7
Systematic Electronic Tuning on the Property and Reactivity of Cobalt-(Hydro)peroxo Intermediates.
Inorg Chem. 2023 May 15;62(19):7141-7149. doi: 10.1021/acs.inorgchem.3c00826. Epub 2023 May 4.
8
Mononuclear metal-O2 complexes bearing macrocyclic N-tetramethylated cyclam ligands.
Acc Chem Res. 2012 Aug 21;45(8):1321-30. doi: 10.1021/ar3000019. Epub 2012 May 21.
9
Structure and reactivity of a mononuclear non-haem iron(III)-peroxo complex.
Nature. 2011 Oct 26;478(7370):502-5. doi: 10.1038/nature10535.
10
Reactivity of a cobalt(III)-peroxo complex in oxidative nucleophilic reactions.
J Inorg Biochem. 2008 Dec;102(12):2155-9. doi: 10.1016/j.jinorgbio.2008.08.008. Epub 2008 Sep 2.

引用本文的文献

1
Water co-catalysis in aerobic olefin epoxidation mediated by ruthenium oxo complexes.
Chem Sci. 2024 Jan 9;15(9):3104-3115. doi: 10.1039/d3sc05516g. eCollection 2024 Feb 28.
2
Mechanistic Insights into Nitrile Activation by Cobalt(III)-Hydroperoxo Intermediates: The Influence of Ligand Basicity.
JACS Au. 2023 Oct 31;3(11):3204-3212. doi: 10.1021/jacsau.3c00532. eCollection 2023 Nov 27.
4
Reactivity of Myoglobin Reconstituted with Cobalt Corrole toward Hydrogen Peroxide.
Int J Mol Sci. 2022 Apr 27;23(9):4829. doi: 10.3390/ijms23094829.
5
Spectroscopic Evidence for a Cobalt-Bound Peroxyhemiacetal Intermediate.
JACS Au. 2021 Oct 6;1(10):1594-1600. doi: 10.1021/jacsau.1c00166. eCollection 2021 Oct 25.
6
Formation of cobalt-oxygen intermediates by dioxygen activation at a mononuclear nonheme cobalt(ii) center.
Dalton Trans. 2021 Sep 14;50(34):11889-11898. doi: 10.1039/d1dt01996a. Epub 2021 Aug 10.

本文引用的文献

1
Transition Metal Catalysis in the Baeyer-Villiger Oxidation of Ketones.
Angew Chem Int Ed Engl. 1998 May 18;37(9):1198-1209. doi: 10.1002/(SICI)1521-3773(19980518)37:9<1198::AID-ANIE1198>3.0.CO;2-Y.
2
A Structurally Characterized Nonheme Cobalt-Hydroperoxo Complex Derived from Its Superoxo Intermediate via Hydrogen Atom Abstraction.
J Am Chem Soc. 2016 Nov 2;138(43):14186-14189. doi: 10.1021/jacs.6b08642. Epub 2016 Oct 20.
5
Status of reactive non-heme metal-oxygen intermediates in chemical and enzymatic reactions.
J Am Chem Soc. 2014 Oct 8;136(40):13942-58. doi: 10.1021/ja507807v. Epub 2014 Sep 29.
6
Spectroscopic characterization and reactivity studies of a mononuclear nonheme Mn(III)-hydroperoxo complex.
J Am Chem Soc. 2014 Sep 3;136(35):12229-32. doi: 10.1021/ja506275q. Epub 2014 Aug 20.
7
Introduction: bioinorganic enzymology II.
Chem Rev. 2014 Apr 9;114(7):3367-8. doi: 10.1021/cr500118g.
8
1958-2014: after 56 years of research, cytochrome p450 reactivity is finally explained.
Angew Chem Int Ed Engl. 2014 May 5;53(19):4750-2. doi: 10.1002/anie.201402404. Epub 2014 Apr 7.
10
Editorial for the virtual issue on models of metalloenzymes.
Inorg Chem. 2013 Jul 1;52(13):7307-10. doi: 10.1021/ic4013813.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验