Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University , Kent, Ohio 44242, United States.
Chem Rev. 2016 Dec 28;116(24):15089-15166. doi: 10.1021/acs.chemrev.6b00415. Epub 2016 Dec 12.
Light-driven phenomena both in living systems and nonliving materials have enabled truly fascinating and incredible dynamic architectures with terrific forms and functions. Recently, liquid crystalline materials endowed with photoresponsive capability have emerged as enticing systems. In this Review, we focus on the developments of light-driven liquid crystalline materials containing photochromic components over the past decade. Design and synthesis of photochromic liquid crystals (LCs), photoinduced phase transitions in LC, and photoalignment and photoorientation of LCs have been covered. Photomodulation of pitch, polarization, lattice constant and handedness inversion of chiral LCs is discussed. Light-driven phenomena and properties of liquid crystalline polymers, elastomers, and networks have also been analyzed. The applications of photoinduced phase transitions, photoalignment, photomodulation of chiral LCs, and photomobile polymers have been highlighted wherever appropriate. The combination of photochromism, liquid crystallinity, and fabrication techniques has enabled some fascinating functional materials which can be driven by ultraviolet, visible, and infrared light irradiation. Nanoscale particles have been incorporated to widen and diversify the scope of the light-driven liquid crystalline materials. The developed materials possess huge potential for applications in optics, photonics, adaptive materials, nanotechnology, etc. The challenges and opportunities in this area are discussed at the end of the Review.
光驱动现象在生命系统和非生命材料中都已经实现了真正令人着迷和不可思议的动态结构,具有极好的形式和功能。最近,具有光响应能力的液晶材料已经成为诱人的体系。在这篇综述中,我们重点介绍了过去十年中含有光致变色组分的光驱动液晶材料的发展。涵盖了光致变色液晶(LC)的设计与合成、LC 的光诱导相转变、LC 的光取向和光对准。讨论了手性 LC 的 pitches、偏振、晶格常数和螺旋性反转的光调制。还分析了液晶聚合物、弹性体和网络的光致驱动现象和性质。在适当的情况下,强调了光致相转变、光取向、手性 LC 的光调制以及光致动聚合物的应用。光致变色、液晶性和制造技术的结合已经实现了一些令人着迷的功能材料,这些材料可以通过紫外线、可见光和红外光照射来驱动。已经掺入了纳米级颗粒,以拓宽和多样化光驱动液晶材料的范围。所开发的材料在光学、光子学、自适应材料、纳米技术等领域具有巨大的应用潜力。在综述的最后讨论了该领域的挑战和机遇。