State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum , Qingdao 266580, China.
Department of Physics and Astronomy, University of Nevada , Las Vegas, Nevada 89154, United States.
Nano Lett. 2017 Jan 11;17(1):362-367. doi: 10.1021/acs.nanolett.6b04295. Epub 2016 Dec 15.
Understanding the shape-dependent superlattices and resultant anisotropies of both structure and property allows for rational design of materials processing and engineering to fabricate transformative materials with useful properties for applications. This work shows the structural evolution from square lattice of two-dimensional (2D) thin film to rhombic lattice of large three-dimensional (3D) assembles of PtCo nanocubes (NCs). Synchrotron-based X-ray supercrystallography determines the superlattice of large 3D supercrystal into an obtuse rhombohedral (Rh) symmetry, which holds a long-range coherence of both NC translation and atomic crystallographic orientation. The Rh superlattice has a trigonal cell angle of 104°, and the constitute NCs orient their atomic PtCo(111) planes to the superlattice Rh[111] direction. The temperature-dependent in situ small and wide-angle X-ray scattering (SAXS/WAXS) measurements reveal a thermally induced superlattice contraction of supercrystal, which maintains translational ordering but slightly develops orientational disordering. The observed increases of both the packing density and the rotation magnitude of NCs indicate a rational compromise between configurational and rotational entropies of NCs. The resultant minimization of the total free energy is responsible for the formation and stability of the obtuse Rh superlattice. The temperature-dependent in situ measurements of SAXS and electrical resistance reveal that, in conjunction with the thermally induced sharp contraction of superlattice at 160 °C, the supercrystal becomes measurable of electrical resistance, which was followed by a temperature-dependent linear increase. Upon rapid annealing from 250 °C, the supercrystal remains almost constant in both structure and electrical resistance. The heating-enabled electrical conductivity of the supercrystal at high temperature implies the formation of a NC-interconnected architecture. The experiments and overall analysis provide solid evidence and essential information for the use of shape-dependent structural anisotropies of supercrystal to create nanobased novel architecture with desired properties.
理解形状依赖性超晶格以及由此产生的结构和性质各向异性,可实现对材料加工和工程的合理设计,从而制造出具有有用性能的变革性材料。这项工作展示了从二维(2D)薄膜的正方形晶格到大三维(3D)组装的斜方晶格的结构演变PtCo 纳米立方体(NCs)。基于同步加速器的 X 射线超晶体学确定了大 3D 超晶体的超晶格为钝角斜方(Rh)对称,该对称保持了 NC 平移和原子晶体取向的长程相干性。Rh 超晶格具有 104°的三角细胞角,组成的 NC 将其原子 PtCo(111)平面定向到超晶格 Rh[111]方向。随温度变化的原位小角和广角 X 射线散射(SAXS/WAXS)测量显示,超晶体的超晶格发生热诱导收缩,这种收缩保持了平移有序,但略微发展了取向无序。观察到 NC 的堆积密度和旋转幅度均增加,表明 NC 的构象和旋转熵之间存在合理的折衷。总自由能的最小化是钝角 Rh 超晶格形成和稳定的原因。随温度变化的原位 SAXS 和电阻测量表明,与 160°C 时超晶格的热诱导急剧收缩相结合,超晶体具有可测量的电阻,随后电阻随温度呈线性增加。在从 250°C 快速退火后,超晶体在结构和电阻方面几乎保持不变。高温下超晶体的加热致导电性意味着 NC 互连结构的形成。实验和整体分析为利用超晶体的形状依赖性结构各向异性来创造具有所需性能的纳米基新型结构提供了确凿的证据和重要信息。