Suppr超能文献

应对潜在的双亲近亲繁殖:雌雄异株海洋被子植物中有限的花粉和种子传播以及大型基株

Coping with potential bi-parental inbreeding: limited pollen and seed dispersal and large genets in the dioecious marine angiosperm .

作者信息

Van Tussenbroek Brigitta Ine, Valdivia-Carrillo Tania, Rodríguez-Virgen Irene Teresa, Sanabria-Alcaraz Sylvia Nashieli Marisela, Jiménez-Durán Karina, Van Dijk Kor Jent, Marquez-Guzmán Guadalupe Judith

机构信息

Instituto de Ciencias del Mar y Limnología Unidad Académica Sistemas Arrecifales-Puerto Morelos Universidad Nacional Autónoma de México Prolongación Niños Héroes S/N Puerto Morelos Quintana Roo México.

Instituto de Ciencias del Mar y Limnología Unidad Académica Sistemas Arrecifales-Puerto Morelos Universidad Nacional Autónoma de México Prolongación Niños Héroes S/N Puerto Morelos Quintana Roo México; Present address: Department of Life and Health Sciences University of North Texas at Dallas Dallas Texas.

出版信息

Ecol Evol. 2016 Jul 13;6(15):5542-5556. doi: 10.1002/ece3.2309. eCollection 2016 Aug.

Abstract

The high prevalence of dioecy in marine angiosperms or seagrasses (>50% of all species) is thought to enforce cross-fertilization. However, seagrasses are clonal plants, and they may still be subject to sibling-mating or bi-parental inbreeding if the genetic neighborhood is smaller than the size of the genets. We tested this by determining the genetic neighborhoods of the dioecious seagrass at two sites (Back-Reef and Mid-Lagoon) in Puerto Morelos Reef Lagoon, Mexico, by measuring dispersal of pollen and seeds in situ, and by fine-scale spatial autocorrelation analysis with eight polymorphic microsatellite DNA markers. Prevalence of inbreeding was verified by estimating pairwise kinship coefficients; and by analysing the genotypes of seedlings grown from seeds in mesocosms. Average dispersal of pollen was 0.3-1.6 m (max. 4.8 m) and of seeds was 0.3-0.4 m (max. 1.8 m), resulting in a neighborhood area of 7.4 m (range 3.4-11.4 m) at Back-Reef and 1.9 (range 1.87-1.92 m) at Mid-Lagoon. Neighborhood area (Na) derived from spatial autocorrelation was 0.1-20.5 m at Back-Reef and 0.1-16.9 m at Mid-Lagoon. Maximal extensions of the genets, in 19 × 30 m plots, were 19.2 m (median 7.5 m) and 10.8 m (median 4.8 m) at Back-Reef and Mid-Lagoon. There was no indication of deficit or excess of heterozygotes nor were coefficients of inbreeding () significant. The seedlings did not show statistically significant deficit of heterozygotes (except for 1 locus at Back-Reef). Contrary to our expectations, we did not find evidence of bi-parental inbreeding in this dioecious seagrass with large genets but small genetic neighborhoods. Proposed mechanisms to avoid bi-parental inbreeding are possible selection against homozygotes during fecundation or ovule development. Additionally, the genets grew highly dispersed (aggregation index Ac was 0.09 and 0.10 for Back-Reef and Mid-Lagoon, respectively); such highly dispersed guerrilla-like clonal growth form likely increases the probability of crossing between different potentially unrelated genets.

摘要

海洋被子植物或海草中雌雄异株的高比例(超过所有物种的50%)被认为促使了异花受精。然而,海草是克隆植物,如果遗传邻域小于无性系分株的大小,它们可能仍然会发生同胞交配或双亲近亲繁殖。我们通过确定墨西哥莫雷洛斯港礁湖两个地点(后礁和中泻湖)雌雄异株海草的遗传邻域、原位测量花粉和种子的扩散以及使用八个多态微卫星DNA标记进行精细尺度的空间自相关分析来对此进行测试。通过估计成对亲缘系数以及分析在中宇宙中从种子培育出的幼苗的基因型来验证近亲繁殖的发生率。花粉的平均扩散距离为0.3 - 1.6米(最大4.8米),种子的平均扩散距离为0.3 - 0.4米(最大1.8米),在后礁导致的邻域面积为7.4平方米(范围3.4 - 11.4平方米),在中泻湖为1.9平方米(范围1.87 - 1.92平方米)。通过空间自相关得出的邻域面积(Na)在后礁为0.1 - 20.5平方米,在中泻湖为0.1 - 16.9平方米。在19×30米的样地中,无性系分株的最大延伸距离在后礁为19.2米(中位数7.5米),在中泻湖为10.8米(中位数4.8米)。没有杂合子不足或过剩的迹象,近亲繁殖系数()也不显著。幼苗没有表现出杂合子的统计学显著不足(后礁的一个位点除外)。与我们的预期相反,在这种具有大无性系分株但小遗传邻域的雌雄异株海草中,我们没有发现双亲近亲繁殖的证据。为避免双亲近亲繁殖而提出的机制可能是在受精或胚珠发育过程中对纯合子进行选择。此外,无性系分株生长高度分散(后礁和中泻湖的聚集指数Ac分别为0.09和0.10);这种高度分散的游击式克隆生长形式可能会增加不同潜在无关无性系分株之间杂交的概率。

相似文献

2
Against the odds: complete outcrossing in a monoecious clonal seagrass Posidonia australis (Posidoniaceae).
Ann Bot. 2014 Jun;113(7):1185-96. doi: 10.1093/aob/mcu048. Epub 2014 May 7.
3
Local genetic structure in a clonal dioecious angiosperm.
Mol Ecol. 2005 Apr;14(4):957-67. doi: 10.1111/j.1365-294X.2005.02477.x.
6
Range-wide population genetic structure of the Caribbean marine angiosperm .
Ecol Evol. 2018 Aug 29;8(18):9478-9490. doi: 10.1002/ece3.4443. eCollection 2018 Sep.
7
Benthic primary production budget of a Caribbean reef lagoon (Puerto Morelos, Mexico).
PLoS One. 2013 Dec 18;8(12):e82923. doi: 10.1371/journal.pone.0082923. eCollection 2013.
10

引用本文的文献

2
Variation in reproductive effort, genetic diversity and mating systems across seagrass meadows in Western Australia.
AoB Plants. 2020 Aug 6;12(4):plaa038. doi: 10.1093/aobpla/plaa038. eCollection 2020 Aug.
4
Fine-scale genetic structure and flowering output of the seagrass undergoing disturbance.
Ecol Evol. 2019 Apr 21;9(9):5186-5195. doi: 10.1002/ece3.5106. eCollection 2019 May.
5
Range-wide population genetic structure of the Caribbean marine angiosperm .
Ecol Evol. 2018 Aug 29;8(18):9478-9490. doi: 10.1002/ece3.4443. eCollection 2018 Sep.
6
Tolerance of Seeds to Desiccation, Low Temperature, and High Salinity With Special Reference to Long-Term Seed Storage.
Front Plant Sci. 2018 Mar 23;9:221. doi: 10.3389/fpls.2018.00221. eCollection 2018.
7
Disturbance Is an Important Driver of Clonal Richness in Tropical Seagrasses.
Front Plant Sci. 2017 Dec 5;8:2026. doi: 10.3389/fpls.2017.02026. eCollection 2017.
8
Experimental evidence of pollination in marine flowers by invertebrate fauna.
Nat Commun. 2016 Sep 29;7:12980. doi: 10.1038/ncomms12980.

本文引用的文献

1
BIPARENTAL INBREEDING DEPRESSION IN THE SELF-INCOMPATIBLE ANNUAL PLANT GAILLARDIA PULCHELLA (ASTERACEAE).
Am J Bot. 1993 May;80(5):545-550. doi: 10.1002/j.1537-2197.1993.tb13838.x.
2
Fitness-consequences of geitonogamous selfing in a clonal marine angiosperm (Zostera marina).
J Evol Biol. 2001 Jan 8;14(1):129-138. doi: 10.1046/j.1420-9101.2001.00257.x.
4
CROSSING-DISTANCE EFFECTS IN DELPHINIUM NELSONII: OUTBREEDING AND INBREEDING DEPRESSION IN PROGENY FITNESS.
Evolution. 1994 Jun;48(3):842-852. doi: 10.1111/j.1558-5646.1994.tb01366.x.
6
LIFETIME ESTIMATES OF BIPARENTAL INBREEDING DEPRESSION IN THE SELF-INCOMPATIBLE ANNUAL PLANT RAPHANUS SATIVUS.
Evolution. 1995 Apr;49(2):307-316. doi: 10.1111/j.1558-5646.1995.tb02243.x.
7
The movement ecology of seagrasses.
Proc Biol Sci. 2014 Nov 22;281(1795). doi: 10.1098/rspb.2014.0878.
8
Against the odds: complete outcrossing in a monoecious clonal seagrass Posidonia australis (Posidoniaceae).
Ann Bot. 2014 Jun;113(7):1185-96. doi: 10.1093/aob/mcu048. Epub 2014 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验