Suppr超能文献

TiC 纳米粒子锚定在中空碳纳米球上的合成用于增强 Li-S 电池中的多硫化物吸附。

Synthesis of TiC Nanoparticles Anchored on Hollow Carbon Nanospheres for Enhanced Polysulfide Adsorption in Li-S Batteries.

机构信息

State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, 58 Renmin Road, Haikou, 570228, China.

出版信息

ChemSusChem. 2016 Dec 8;9(23):3338-3344. doi: 10.1002/cssc.201601145. Epub 2016 Nov 16.

Abstract

A novel spatial confinement strategy based on a carbon/TiO /carbon sandwich structure is proposed to synthesize TiC nanoparticles anchored on hollow carbon nanospheres (TiC@C) through a carbothermal reduction reaction. During the synthesis process, two carbon layers not only serve as reductant to convert TiO into TiC nanoparticles, but also create a spatial confinement to suppress the aggregation of TiO , resulting in the formation of well-dispersed TiC nanoparticles. This unique TiC@C structure shows an outstanding long-term cycling stability at high rates owing to the strong physical and chemical adsorption of lithium polysulfides (i.e., a high capacity of 732.6 mA h g at 1600 mA g ) and it retains a capacity of 443.2 mA h g after 1000 cycles, corresponding to a decay rate of only 0.0395 % per cycle. Therefore, this unique TiC@C composite could be considered as an important candidate for the cathode material in Li-S batteries.

摘要

提出了一种基于碳/TiO 2 /碳夹层结构的新型空间限制策略,通过碳热还原反应合成了锚定在中空碳纳米球上的 TiC 纳米粒子(TiC@C)。在合成过程中,两层碳不仅作为还原剂将 TiO 2 转化为 TiC 纳米粒子,而且还创造了一个空间限制来抑制 TiO 2 的聚集,从而形成了分散良好的 TiC 纳米粒子。这种独特的 TiC@C 结构在高倍率下表现出优异的长期循环稳定性,因为它对多硫化锂具有很强的物理和化学吸附(即,在 1600 mA g 时具有 732.6 mA h g 的高容量),并且在 1000 次循环后仍保持 443.2 mA h g 的容量,对应的衰减率仅为 0.0395%/循环。因此,这种独特的 TiC@C 复合材料可以被认为是 Li-S 电池中阴极材料的重要候选材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验