Suppr超能文献

河口系统中量子点的聚集、沉降、溶解及生物利用度

Aggregation, Sedimentation, Dissolution, and Bioavailability of Quantum Dots in Estuarine Systems.

作者信息

Xiao Yao, Ho Kay T, Burgess Robert M, Cashman Michaela

机构信息

University of Rhode Island , Department of Geosciences, Kingston, Rhode Island 02881, United States.

出版信息

Environ Sci Technol. 2017 Feb 7;51(3):1357-1363. doi: 10.1021/acs.est.6b04475. Epub 2016 Dec 29.

Abstract

To understand their fate and transport in estuarine systems, the aggregation, sedimentation, and dissolution of CdSe quantum dots (QDs) in seawater were investigated. Hydrodynamic size increased from 40 to 60 nm to >1 mm within 1 h in seawater, and the aggregates were highly polydispersed. Their sedimentation rates in seawater were measured to be 4-10 mm/day. Humic acid (HA), further increased their size and polydispersity, and slowed sedimentation. Light increased their dissolution and release of dissolved Cd. The ZnS shell also slowed release of Cd ions. With sufficient light, HA increased the dissolution of QDs, while with low light, HA alone did not change their dissolution. The benthic zone in estuarine systems is the most probable long-term destination of QDs due to aggregation and sedimentation. The bioavailability of was evaluated using the mysid Americamysis bahia. The 7-day LC50s of particulate and dissolved QDs were 290 and 23 μg (total Cd)/L, respectively. For mysids, the acute toxicity appears to be from Cd ions; however, research on the effects of QDs should be conducted with other organisms where QDs may be lodged in critical tissues such as gills or filtering apparatus and Cd ions may be released and delivered directly to those tissues.

摘要

为了解CdSe量子点(QDs)在河口系统中的归宿和迁移,研究了其在海水中的聚集、沉降和溶解情况。在海水中,流体动力学尺寸在1小时内从40至60纳米增加到大于1毫米,且聚集体高度多分散。测得它们在海水中的沉降速率为4 - 10毫米/天。腐殖酸(HA)进一步增大了它们的尺寸和多分散性,并减缓了沉降。光照增加了它们的溶解以及镉的释放。ZnS壳层也减缓了镉离子的释放。在充足光照下,HA增加了量子点的溶解,而在低光照下,单独的HA并未改变它们的溶解情况。由于聚集和沉降,河口系统的底栖区域是量子点最可能的长期归宿。使用海湾磷虾评估了其生物可利用性。颗粒态和溶解态量子点的7天半数致死浓度(LC50)分别为290和23微克(总镉)/升。对于磷虾而言,急性毒性似乎来自镉离子;然而,对于量子点影响的研究应在其他生物上开展,在这些生物中量子点可能沉积在关键组织如鳃或过滤器官中,镉离子可能被释放并直接输送到这些组织。

相似文献

1
Aggregation, Sedimentation, Dissolution, and Bioavailability of Quantum Dots in Estuarine Systems.
Environ Sci Technol. 2017 Feb 7;51(3):1357-1363. doi: 10.1021/acs.est.6b04475. Epub 2016 Dec 29.
3
Water chemistry influences on long-term dissolution kinetics of CdSe/ZnS quantum dots.
J Environ Sci (China). 2020 Apr;90:216-233. doi: 10.1016/j.jes.2019.11.011. Epub 2019 Dec 12.
4
Chemical stability of CdSe quantum dots in seawater and their effects on a marine microalga.
Aquat Toxicol. 2012 Oct 15;122-123:153-62. doi: 10.1016/j.aquatox.2012.06.012. Epub 2012 Jul 5.
5
Bioaccumulation and in-vivo dissolution of CdSe/ZnS with three different surface coatings by Daphnia magna.
Chemosphere. 2016 Jan;143:115-22. doi: 10.1016/j.chemosphere.2015.06.049. Epub 2015 Jul 7.
6
Effects of CdSe and CdSe/ZnS Core/Shell Quantum Dots on Singlet Oxygen Production and Cell Toxicity.
J Nanosci Nanotechnol. 2018 Mar 1;18(3):1568-1576. doi: 10.1166/jnn.2018.15305.
7
The cytotoxicities in prokaryote and eukaryote varied for CdSe and CdSe/ZnS quantum dots and differed from cadmium ions.
Ecotoxicol Environ Saf. 2019 Oct 15;181:336-344. doi: 10.1016/j.ecoenv.2019.06.027. Epub 2019 Jun 13.
8
Accumulation, translocation, and transformation of two CdSe/ZnS quantum dots in rice and pumpkin plants.
Sci Total Environ. 2023 Mar 15;864:161156. doi: 10.1016/j.scitotenv.2022.161156. Epub 2022 Dec 23.
10

引用本文的文献

2
Monitoring the Cd release from Cd-containing quantum dots in simulated body fluids by size exclusion chromatography coupled with ICP-MS.
Anal Bioanal Chem. 2022 Jul;414(18):5529-5536. doi: 10.1007/s00216-022-03976-x. Epub 2022 Feb 25.
3
Tracing multi-isotopically labelled CdSe/ZnS quantum dots in biological media.
Sci Rep. 2020 Feb 18;10(1):2866. doi: 10.1038/s41598-020-59206-w.
4
Toxicity Evaluation of Quantum Dots (ZnS and CdS) Singly and Combined in Zebrafish ().
Int J Environ Res Public Health. 2019 Dec 28;17(1):232. doi: 10.3390/ijerph17010232.
5
Ligands and media impact interactions between engineered nanomaterials and clay minerals.
NanoImpact. 2019 Jan;13:112-122. doi: 10.1016/j.impact.2019.01.004. Epub 2019 Jan 18.
7
Fate and Transformation of Graphene Oxide in Estuarine and Marine Waters.
Environ Sci Technol. 2019 May 21;53(10):5858-5867. doi: 10.1021/acs.est.8b06485. Epub 2019 Apr 30.

本文引用的文献

1
Environmental behaviour and ecotoxicity of quantum dots at various trophic levels: A review.
Environ Int. 2017 Jan;98:1-17. doi: 10.1016/j.envint.2016.09.021. Epub 2016 Oct 13.
2
Tissue specific responses to cadmium-based quantum dots in the marine mussel Mytilus galloprovincialis.
Aquat Toxicol. 2015 Dec;169:10-8. doi: 10.1016/j.aquatox.2015.10.001. Epub 2015 Oct 8.
3
Toxicokinetics and tissue distribution of cadmium-based Quantum Dots in the marine mussel Mytilus galloprovincialis.
Environ Pollut. 2015 Sep;204:207-14. doi: 10.1016/j.envpol.2015.05.008. Epub 2015 May 14.
4
Cadmium sulfide quantum dots induce oxidative stress and behavioral impairments in the marine clam Scrobicularia plana.
Environ Toxicol Chem. 2015 Jul;34(7):1659-64. doi: 10.1002/etc.2967. Epub 2015 May 12.
5
Toxicity, bioaccumulation, and biotransformation of silver nanoparticles in marine organisms.
Environ Sci Technol. 2014 Dec 2;48(23):13711-7. doi: 10.1021/es502976y.
6
Immunocytotoxicity, cytogenotoxicity and genotoxicity of cadmium-based quantum dots in the marine mussel Mytilus galloprovincialis.
Mar Environ Res. 2014 Oct;101:29-37. doi: 10.1016/j.marenvres.2014.07.009. Epub 2014 Aug 4.
8
Genome-wide approach in Arabidopsis thaliana to assess the toxicity of cadmium sulfide quantum dots.
Environ Sci Technol. 2014 May 20;48(10):5902-9. doi: 10.1021/es404958r. Epub 2014 Apr 29.
10
Toxicity and accumulation of silver nanoparticles during development of the marine polychaete Platynereis dumerilii.
Sci Total Environ. 2014 Apr 1;476-477:688-95. doi: 10.1016/j.scitotenv.2014.01.039. Epub 2014 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验