NanoScience Technology Center, §Department of Materials Science & Engineering, ⊥College of Optics & Photonics (CREOL), ||College of Engineering, #Department of Chemistry, and ¶Department of Mechanical and Aerospace Engineering, University of Central Florida , 4000 Central Florida Boulevard. Orlando, Florida 32816, United States.
ACS Appl Mater Interfaces. 2016 Dec 28;8(51):34970-34977. doi: 10.1021/acsami.6b14586. Epub 2016 Dec 15.
Novel Au@TiO plasmonic films were fabricated by individually placing Au nanoparticles into TiO nanocavity arrays through a sputtering and dewetting process. These discrete Au nanoparticles in TiO nanocavities showed strong visible-light absorption due to the plasmonic resonance. Photoelectrochemical studies demonstrated that the developed Au@TiO plasmonic films exhibited significantly enhanced catalytic activities toward oxygen reduction reactions with an onset potential of 0.92 V (vs reversible hydrogen electrode), electron transfer number of 3.94, and limiting current density of 5.2 mA cm. A superior ORR activity of 310 mA mg is achieved using low Au loading mass. The isolated Au nanoparticle size remarkably affected the catalytic activities of Au@TiO, and TiO coated with 5 nm Au (Au@TiO) exhibited the best catalytic function to reduce oxygen. The plasmon-enhanced reductive activity is attributed to the surface plasmonic resonance of isolated Au nanoparticles in TiO nanocavities and suppressed electron recombination. This work provides comprehensive understanding of a novel plasmonic system using isolated noble metals into nanostructured semiconductor films as a potential alternative catalyst for oxygen reduction reaction.
通过溅射和去湿过程,将金纳米粒子单独放置在 TiO 纳米腔阵列中,制备了新型 Au@TiO 等离子体薄膜。由于等离子体共振,TiO 纳米腔中的离散金纳米粒子表现出很强的可见光吸收。光电化学研究表明,所开发的 Au@TiO 等离子体薄膜在氧还原反应中表现出显著增强的催化活性,起始电位为 0.92 V(相对于可逆氢电极),电子转移数为 3.94,极限电流密度为 5.2 mA cm。使用低 Au 负载质量可实现 310 mA mg 的优异 ORR 活性。孤立金纳米颗粒的尺寸显著影响 Au@TiO 的催化活性,涂覆有 5nmAu(Au@TiO)的 TiO 表现出最佳的还原氧的催化功能。等离子体增强的还原活性归因于 TiO 纳米腔中孤立 Au 纳米颗粒的表面等离子体共振和抑制电子复合。这项工作提供了对使用孤立贵金属作为氧还原反应潜在替代催化剂的新型等离子体系统的全面理解。