Rangsungnoen S, Chanbenjapipu P, Mathuradavong N, Suwanprasert K
Medical Engineering Program, Faculty of Engineering, Thammasat University, Bangkok, Thailand.
Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Bangkok, Thailand.
J Med Eng. 2016;2016:9823026. doi: 10.1155/2016/9823026. Epub 2016 Nov 14.
Sudden death caused by abnormal QTc and atrial fibrillation (AF) has been reported in stroke. Heart rate variability (HRV) is reduced with missing beats of RRI during arrhythmic episode and abnormal QTc variation during acute stroke. In this study, we develop a hybrid signal processing by Pan Tompkins QRS detection and Kalman filter estimator for meaningful missing beats and searching AF with prolonged QTc. We use this hybrid model to investigate RRIs of Lead II ECG in thirty acute stroke patients with long QTc and AF (LQTc-AF) and normal QTc without AF (NQTc-nonAF) and then assess them by HRV. In LQTc-AF Kalman, higher mean heart rate with lower mean RRIs compared to NQTc-nonAF Kalman was characterized. LQTc-AF Kalman showed significant increase in SDNN, HF, SD2, SD2/SD1, and sample entropy. SDNN and HF associated with high RMSSD, pNN50, and SD1 reflect predominant parasympathetic drive for sympathovagal balance in LQTc-AF Kalman. Greater SD2, SD2/SD1, and sample entropy indicate more scatter of Poincaré plot. Compared with conventional Labchart, fractal scaling exponent of 1 (DFA) is higher in LQTc-AF Kalman. Remarkable complexity with parasympathetic drive in LQTc-AF Kalman suggests an influence of missing beats during stroke.
已有报道称,中风可导致由异常QTc和心房颤动(AF)引起的猝死。在心律失常发作期间,RR间期(RRI)缺失会导致心率变异性(HRV)降低,急性中风期间QTc也会出现异常变化。在本研究中,我们开发了一种混合信号处理方法,即通过Pan Tompkins QRS检测和卡尔曼滤波器估计器来处理有意义的缺失搏动,并寻找QTc延长的房颤。我们使用这种混合模型研究了30例长QTc合并房颤(LQTc-AF)的急性中风患者和30例QTc正常且无房颤(NQTc-nonAF)的急性中风患者II导联心电图的RR间期,然后通过HRV对其进行评估。与NQTc-nonAF卡尔曼模型相比,LQTc-AF卡尔曼模型的平均心率更高,平均RR间期更低。LQTc-AF卡尔曼模型的标准偏差(SDNN)、高频功率(HF)、SD2、SD2/SD1和样本熵显著增加。在LQTc-AF卡尔曼模型中,与高差值均方根(RMSSD)、相邻RR间期差值超过50ms的心搏数占总心搏数的百分比(pNN50)和SD1相关的SDNN和HF反映了交感神经-迷走神经平衡中主要的副交感神经驱动作用。更大的SD2、SD2/SD1和样本熵表明庞加莱图更分散。与传统的Labchart相比,LQTc-AF卡尔曼模型的分形标度指数1(DFA)更高。LQTc-AF卡尔曼模型中副交感神经驱动的显著复杂性表明中风期间的缺失搏动具有影响。