Suppr超能文献

通过拉曼光谱和密度泛函理论分析设想末端保护的脯氨酸二肽的结构洞察。

Envisaging Structural Insight of a Terminally Protected Proline Dipeptide by Raman Spectroscopy and Density Functional Theory Analyses.

作者信息

Das Supriya, Pal Uttam, Chatterjee Moumita, Pramanik Sumit Kumar, Banerji Biswadip, Maiti Nakul C

机构信息

Structural Biology & Bio-informatics Division and ‡Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology ; 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India.

出版信息

J Phys Chem A. 2016 Dec 15;120(49):9829-9840. doi: 10.1021/acs.jpca.6b10017. Epub 2016 Dec 6.

Abstract

The proline residue in a protein sequence generates constraints to its secondary structure as the associated torsion angles become a part of the heterocyclic ring. It becomes more significant when two consecutive proline residues link via amide linkage and produce additional configurational constraint to a protein's folding and stability. In the current manuscript we have illustrated conformation preference of a novel dipeptide, (R)-tert-butyl 2-((S)-2-(methoxycarbonyl)pyrrolidine-1-carbonyl)pyrrolidine-1-carboxylate. The dipeptide crystallized in the orthorhombic crystalline state and produced rod-shaped macroscopic material. The analysis of the crystal coordinates showed dihedral angles (φ, ψ) of the interlinked amide groups as (+72°, -147°) and the dihedral angles (φ, ψ) produced with the next carbonyl were (-68°, +151°), indicating polyglycine II (PGII) and polyproline II (PPII)-like helix states at the N- and C-terminals, respectively. These two states, PGII and PPII, are mirror image configurations and are expected to produce similar vibration bands from the associated carbonyl groups. However, the unique atomic arrangement in the molecule produces three carbonyl groups and one of them was very specific, being part of the main peptide linkage that connects both the pyrrolidine rings. The carbonyl group in the peptide bond exhibited a Raman vibration frequency at ∼1642 cm and is considered a signatory Raman marker band for the peptide bond linking two heterochiral proline residues. The carbonyl group (t-Boc) at the N-terminal of the peptide showed a characteristic vibration at ∼1685 cm and the C-terminal carbonyl group as a part of the ester showed a vibration signature at a significantly high frequency (1746 cm). Conformation analyses performed with density functional theory (DFT) calculations depicted that the dipeptide was stabilized in vacuum with dihedral angles (+72°, -154°) and (-72°, +151°) at the N- and C-terminals, respectively. Molecular dynamics (MD) simulation also showed that the peptide conformation having dihedral angles around (+75°, -150°) and (-75°, +150°) at the N- and C-terminals, respectively, was reasonably stable in water. Due to unique absence of the amide N-H, the peptide was ineffective in forming any intramolecular hydrogen bonding. MD investigation, however, revealed an intermolecular hydrogen bonding interaction with the water molecules, leading to its stability in aqueous solution. Metadynamics simulation analysis of the dipeptide in water also supported the PGII-PPII-like conformation at the N- and C-terminals, respectively, as the energetically stable conformation among the other possible combinations of conformations. The possible electronic transitions along with the HOMO-LUMO analysis further depicted the stability of the dipeptide in water and their possible absorption pattern. Time-dependent density functional theory (TDDFT) analysis showed strong negative rotatory strength of the dipeptide around 210 nm in water and acetonitrile, and it could be the source of experimentally observed high-amplitude negative absorption in the circular dichroism (CD) spectra around 200-203 nm. The very weak positive band (signature) in the region at ∼228 nm in CD spectra could also be correlated to the positive rotatory strength at 228 nm observed in ECD. To test the effect of such a dipeptide on a living cell, an MTT assay was performed and the result indicated no cytotoxic effect toward human hepatocellular carcinoma Hep G2 cancer cell lines.

摘要

蛋白质序列中的脯氨酸残基会对其二级结构产生限制,因为相关的扭转角成为杂环的一部分。当两个连续的脯氨酸残基通过酰胺键连接并对蛋白质的折叠和稳定性产生额外的构型限制时,这种影响就更为显著。在当前的手稿中,我们阐述了一种新型二肽,即(R)-叔丁基 2-((S)-2-(甲氧基羰基)吡咯烷-1-羰基)吡咯烷-1-羧酸酯的构象偏好。该二肽以正交晶态结晶,并形成了棒状宏观材料。晶体坐标分析显示,相连酰胺基团的二面角(φ, ψ)为(+72°, -147°),与下一个羰基形成的二面角(φ, ψ)为(-68°, +151°),分别表明在 N 端和 C 端存在聚甘氨酸 II (PGII) 型和聚脯氨酸 II (PPII) 型螺旋状态。PGII 和 PPII 这两种状态是镜像构型,预计会从相关羰基产生相似的振动带。然而,分子中独特的原子排列产生了三个羰基,其中一个非常特殊,它是连接两个吡咯烷环的主肽键的一部分。肽键中的羰基在1642 cm 处表现出拉曼振动频率,被认为是连接两个异手性脯氨酸残基的肽键的标志性拉曼标记带。肽 N 端的羰基(t-Boc)在1685 cm 处显示出特征振动,而作为酯一部分的 C 端羰基在显著较高频率(1746 cm)处显示出振动特征。用密度泛函理论(DFT)计算进行的构象分析表明,该二肽在真空中分别以 N 端二面角(+72°, -154°)和 C 端二面角(-72°, +151°)稳定存在。分子动力学(MD)模拟还表明,在水中,N 端和 C 端二面角分别约为(+75°, -150°)和(-75°, +150°)的肽构象相当稳定。由于独特地缺少酰胺 N-H,该肽在形成任何分子内氢键方面无效。然而,MD 研究揭示了与水分子的分子间氢键相互作用,导致其在水溶液中的稳定性。对水中二肽的元动力学模拟分析也支持在 N 端和 C 端分别为 PGII-PPII 型构象,这是在其他可能的构象组合中能量上稳定的构象。伴随 HOMO-LUMO 分析的可能电子跃迁进一步描述了二肽在水中的稳定性及其可能的吸收模式。含时密度泛函理论(TDDFT)分析表明,该二肽在水和乙腈中在 210 nm 左右具有很强的负旋光强度,这可能是在 200 - 203 nm 左右圆二色性(CD)光谱中实验观察到的高振幅负吸收的来源。CD 光谱中在~228 nm 区域非常弱的正带(特征)也可能与在 ECD 中观察到的 228 nm 处的正旋光强度相关。为了测试这种二肽对活细胞的影响,进行了 MTT 试验,结果表明对人肝癌 Hep G2 癌细胞系没有细胞毒性作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验