Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
Institute of Chemical Research of Catalonia (ICIQ) and Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.
Angew Chem Int Ed Engl. 2017 Feb 6;56(7):1775-1779. doi: 10.1002/anie.201610552. Epub 2016 Dec 16.
Ligand-modified palladium nanoparticles deposited on a carbon carrier efficiently catalyze the direct synthesis of H O and the unique performance is due to their hybrid nanostructure. Catalytic testing demonstrated that the selectivity increases with the HHDMA ligand content from 10 % for naked nanoparticles up to 80 %, rivalling that obtained with state-of-the-art bimetallic catalysts (HHDMA=C H NO P). Furthermore, it remains stable over five consecutive reaction runs owing to the high resistance towards leaching of the organic moiety, arising from its bond with the metal surface. As rationalized by density functional theory, this behavior is attributed to the adsorption mode of the reaction intermediates on the metal surface. Whereas they lie flat in the absence of the organic shell, their electrostatic interaction with the ligand result in a unique vertical configuration which prevents further dissociation and over-hydrogenation. These findings demonstrate the importance of understanding substrate-ligand interactions in capped nanoparticles to develop smart catalysts for the sustainable manufacture of hydrogen peroxide.
负载在碳载体上的配体修饰钯纳米粒子能高效催化 H O 的直接合成,其独特的性能归因于它们的混合纳米结构。催化测试表明,随着 HHDMA 配体含量的增加(从裸露纳米粒子的 10%增加到 80%),选择性增加,与最先进的双金属催化剂(HHDMA=C H NO P)相当。此外,由于有机部分与金属表面的键合,其对浸出具有很高的抵抗力,因此在五个连续的反应循环中保持稳定。通过密度泛函理论合理化,这种行为归因于反应中间体在金属表面上的吸附模式。在没有有机壳的情况下,它们平躺,它们与配体的静电相互作用导致独特的垂直构型,阻止进一步离解和过度氢化。这些发现表明,在 capped nanoparticles 中理解底物-配体相互作用对于开发用于可持续制造过氧化氢的智能催化剂非常重要。