Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
North Japan Research Institute for Sustainable Energy (NJRISE), Hirosaki University, 2-1-3, Matsubara, Aomori 030-0813, Japan.
Nanoscale. 2017 Jan 5;9(2):823-831. doi: 10.1039/c6nr08765e.
The development of suitable cathode materials for sodium-ion batteries is the key issue to realize their large-scale applications owing to the lack of appropriate materials with adequate electrochemical capacity and reversibility for Na-ion insertion reaction. Here, a string of nickel hexacyanoferrate (NiHCF) nanocubes is coaxially grown on a CNT@bipolar conducting polymer (BCP) by a facile electrochemical route, and used as a high-performance cathode material for sodium-ion batteries. The obtained cathode shows a surprisingly high specific capacity of 194 mA h g upon the initial discharge, a good cycling performance and excellent rate performance. It is considered that the unique nanostructure not only effectively facilitates the electrode/electrolyte interaction and the electronic and ionic transportation but also exerts a synergistic effect between the BCP and NiHCF nanocubes to trigger the kinetics of the electron and ion transport. It is expected that such a promising environmentally friendly alternative cathode material can be widely applied for sodium-ion batteries (SIBs).
由于缺乏具有足够电化学容量和可逆性的合适材料来进行钠离子嵌入反应,因此开发适用于钠离子电池的阴极材料是实现其大规模应用的关键问题。在这里,通过简便的电化学方法在 CNT@双极导电聚合物(BCP)上同轴生长了一系列镍六氰合铁酸盐(NiHCF)纳米立方体,并将其用作高性能钠离子电池的阴极材料。所得到的阴极在初始放电时表现出令人惊讶的高比容量 194 mA h g-1,具有良好的循环性能和优异的倍率性能。据认为,独特的纳米结构不仅可以有效地促进电极/电解质相互作用以及电子和离子传输,而且还可以在 BCP 和 NiHCF 纳米立方体之间发挥协同作用,从而引发电子和离子输运的动力学。有望将这种有前途的环保型替代阴极材料广泛应用于钠离子电池(SIBs)。