Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States.
Acc Chem Res. 2017 Jan 17;50(1):12-21. doi: 10.1021/acs.accounts.6b00343. Epub 2016 Dec 20.
Current interest in functional assemblies of inorganic nanoparticles (NPs) stems from their collective properties and diverse applications ranging from nanomedicines to optically active metamaterials. Coating the surface of NPs with polymers allows for tailoring of the interactions between NPs to assemble them into hybrid nanocomposites with targeted architectures. This class of building blocks is termed "hairy" inorganic NPs (HINPs). Regiospecific attachment of polymers has been used to achieve directional interactions for HINP assembly. However, to date anisotropic surface functionalization of NPs still remains a challenge. This Account provides a review of the recent progress in the self-assembly of isotropically functionalized HINPs in both the condensed state and aqueous solution as well as the applications of assembled structures in such areas as biomedical imaging and therapy. It aims to provide fundamental mechanistic insights into the correlation between structural characteristics and self-assembly behaviors of HINPs, with an emphasis on HINPs made from NPs grafted with linear block copolymer (BCP) brushes. The key to the anisotropic self-assembly of these HINPs is the generation of directional interactions between HINPs by designing the surrounding medium (e.g., polymer matrix) or engineering the surface chemistry of the HINPs. First, HINPs can self-assemble into a variety of 1D, 2D, or 3D nanostructures with a nonisotropic local arrangement of NPs in films. Although a template is not always required, a polymer matrix (BCPs or supramolecules) can be used to assist the assembly of HINPs to form hybrid architectures. The interactions between brushes of neighboring HINPs or between HINPs and the polymer matrix can be modulated by varying the grafting density and length of one or multiple types of polymers on the surface of the NPs. Second, the rational design of deformable brushes of BCP or mixed homopolymer tethers on HINPs enables the anisotropic assembly of HINPs (in analogy to molecular self-assembly) into complex functional structures in selective solvents. It is evidenced that the directional interactions between BCP-grafted NPs arise from the redistribution and conformation change of the long, flexible polymer tethers, while the lateral phase separation of brushes on NP surfaces is responsible for the assembly of HINPs carrying binary immiscible homopolymers. For HINPs decorated with amphiphilic BCP brushes, their self-assembly can produce a variety of hybrid structures, such as vesicles with a monolayer of densely packed NPs in the membranes and with controlled sizes, shapes (e.g., spherical, hemispherical, disklike), and morphologies (e.g., patchy, Janus-like). This strategy allows fine-tuning of the NP organization and collective properties of HINP assemblies, thus facilitating their application in effective cancer imaging, therapy, and drug delivery. We expect that the design and assembly of such HINPs with isotropic functionalization is likely to open up new avenues for the fabrication of new functional nanocomposites and devices because of its simplicity, low cost, and ease of scale-up.
目前,人们对无机纳米粒子(NPs)的功能组装材料很感兴趣,这主要是因为它们具有集体性质和多样化的应用,从纳米医学到光学活性超材料。通过在 NPs 表面涂覆聚合物,可以对 NPs 之间的相互作用进行定制,从而将它们组装成具有目标结构的混合纳米复合材料。这类构建块被称为“毛茸茸”的无机 NPs(HINPs)。聚合物的区域特异性附着已被用于实现 HINP 组装的定向相互作用。然而,迄今为止,NP 的各向异性表面功能化仍然是一个挑战。本综述提供了对在凝聚态和水溶液中各向同性功能化 HINP 的自组装以及组装结构在生物医学成像和治疗等领域的应用的最新进展的综述。它旨在为 HINP 的自组装行为与结构特征之间的相关性提供基本的机制见解,重点介绍由接枝线性嵌段共聚物(BCP)刷的 NPs 制成的 HINP。这些 HINP 各向异性自组装的关键是通过设计周围介质(例如聚合物基质)或对 HINP 的表面化学进行工程设计,从而在 HINP 之间产生定向相互作用。首先,HINP 可以自组装成各种 1D、2D 或 3D 纳米结构,其中 NPs 在薄膜中具有各向异性的局部排列。虽然不总是需要模板,但聚合物基质(BCP 或超分子)可用于辅助 HINP 的组装以形成混合结构。通过改变 NPs 表面上一种或多种聚合物的接枝密度和长度,可以调节相邻 HINP 之间的刷状相互作用或 HINP 与聚合物基质之间的相互作用。其次,通过在 HINP 上设计具有变形性的 BCP 或混合均聚物接枝,可以在选择性溶剂中将 HINP 各向异性地组装成复杂的功能结构。有证据表明,接枝 NP 上的 BCP 刷之间的定向相互作用源于长而灵活的聚合物链的重新分布和构象变化,而 NP 表面上刷状的横向相分离则负责组装带有二元不混溶均聚物的 HINP。对于带有两亲性 BCP 刷的 HINP,其自组装可以产生各种混合结构,例如在膜中具有单层紧密堆积 NPs 的囊泡,并且具有可控的尺寸、形状(例如,球形、半球形、盘形)和形态(例如,有斑点的、类 Janus)。这种策略允许精细调整 NP 组织和 HINP 组装的集体性质,从而促进它们在有效癌症成像、治疗和药物输送中的应用。我们预计,这种具有各向同性功能化的 HINP 的设计和组装由于其简单性、低成本和易于扩大规模,可能会为新型功能纳米复合材料和器件的制造开辟新途径。