Abbasi Amirali, Sardroodi Jaber Jahanbin
Acta Chim Slov. 2016 Dec;63(4):713-720. doi: 10.17344/acsi.2016.2350.
Density functional theory calculations were carried out in order to study the effects of the adsorption of acrolein molecule on the structural and electronic properties of TiO2 anatase nanoparticles. The ability of pristine and N-doped TiO2 anatase nanoparticles to recognize toxic acrolein (C3H4O) molecule was surveyed in detail. It was concluded that acrolein molecule chemisorbs on the N-doped anatase nanoparticles with large adsorption energy and small distance with respect to the nanoparticle. The results indicate that the adsorption of acrolein on the N-doped TiO2 is energetically more favorable than the adsorption on the pristine one, suggesting that the N doping can energetically facilitate the adsorption of acrolein on the N-doped nanoparticle. It means that the N-doped TiO2 nanoparticle can react with acrolein molecule more efficiently. The interaction between acrolein molecule and N-doped TiO2 can induce substantial variations in the HOMO/LUMO molecular orbitals of the nanoparticle, changing its electrical conductivity which is helpful for developing novel sensor devices for the removal of harmful acrolein molecule. The large overlaps in the projected density of states spectra reveal the formation of chemical bond between two interacting atoms. Charge analysis based on Mulliken charges indicates that charge is transferred from the acrolein molecule to the TiO2 nanoparticle.
为了研究丙烯醛分子吸附对TiO₂锐钛矿型纳米颗粒的结构和电子性质的影响,进行了密度泛函理论计算。详细考察了原始和氮掺杂的TiO₂锐钛矿型纳米颗粒识别有毒丙烯醛(C₃H₄O)分子的能力。得出的结论是,丙烯醛分子以较大的吸附能和相对于纳米颗粒较小的距离化学吸附在氮掺杂的锐钛矿型纳米颗粒上。结果表明,丙烯醛在氮掺杂的TiO₂上的吸附在能量上比在原始TiO₂上的吸附更有利,这表明氮掺杂在能量上可以促进丙烯醛在氮掺杂纳米颗粒上的吸附。这意味着氮掺杂的TiO₂纳米颗粒可以更有效地与丙烯醛分子反应。丙烯醛分子与氮掺杂的TiO₂之间的相互作用会引起纳米颗粒的最高占据分子轨道(HOMO)/最低未占据分子轨道(LUMO)的显著变化,改变其电导率,这有助于开发用于去除有害丙烯醛分子的新型传感器装置。投影态密度谱中的大重叠揭示了两个相互作用原子之间化学键的形成。基于Mulliken电荷的电荷分析表明,电荷从丙烯醛分子转移到TiO₂纳米颗粒上。