Dept. of Physical Sciences, Indian Institute of Science Education and Research - Kolkata, Mohanpur 741 246, Nadia, West Bengal, India.
Raja Ramanna Centre for Advanced Technology, Indore 452013, India.
Sci Rep. 2016 Dec 22;6:39582. doi: 10.1038/srep39582.
Spin orbit interaction and the resulting Spin Hall effect of light are under recent intensive investigations because of their fundamental nature and potential applications. Here, we report an interesting manifestation of spin Hall effect of light and demonstrate its tunability in an inhomogeneous anisotropic medium exhibiting spatially varying retardance level. In our system, the beam shift occurs only for one circular polarization mode keeping the other orthogonal mode unaffected, which is shown to arise due to the combined spatial gradients of the geometric phase and the dynamical phase of light. The constituent two orthogonal circular polarization modes of an input linearly polarized light evolve in different trajectories, eventually manifesting as a large and tunable spin separation. The spin dependent beam shift and the demonstrated principle of simultaneously tailoring space-varying geometric and dynamical phase of light for achieving its tunability (of both magnitude and direction), may provide an attractive route towards development of spin-optical devices.
自旋轨道相互作用和由此产生的光自旋霍尔效应由于其本质和潜在应用而受到近期的深入研究。在这里,我们报告了光自旋霍尔效应的一个有趣表现,并在表现出空间变化的延迟水平的非均匀各向异性介质中证明了其可调谐性。在我们的系统中,光束位移仅发生在一个圆偏振模式上,而另一个正交模式不受影响,这是由于光的几何相位和动态相位的空间梯度共同作用而产生的。输入的线性偏振光的两个正交圆偏振模式以不同的轨迹演化,最终表现为大的且可调谐的自旋分离。这种与自旋相关的光束位移以及同时调整光的空间变化的几何和动态相位以实现其可调谐性(幅度和方向)的原理,可能为开发自旋光学器件提供了一条有吸引力的途径。