Suppr超能文献

多核苷酸对氮化硼纳米管分散机理的理论研究。

Theoretic Study on Dispersion Mechanism of Boron Nitride Nanotubes by Polynucleotides.

机构信息

College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, People's Republic of China.

Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden.

出版信息

Sci Rep. 2016 Dec 22;6:39747. doi: 10.1038/srep39747.

Abstract

Due to the unique electrical and mechanical properties of boron nitride nanotubes (BNNT), BNNT has been a promising material for many potential applications, especially in biomedical field. Understanding the dispersion of BNNT in aqueous solution by biomolecules is essential for its use in biomedical applications. In this study, BNNT wrapped by polynucleotides in aqueous solution was investigated by molecular dynamics (MD) simulations. Our results demonstrated that the BNNT wrapped by polynucleotides could greatly hinder the aggregation of BNNTs and improve the dispersion of BNNTs in aqueous solution. Dispersion of BNNTs with the assistance of polynucleotides is greatly affected by the wrapping manner of polynucleotides on BNNT, which mainly depends on two factors: the type of polynucleotides and the radius of BNNT. The interaction between polynucleotides and BNNT(9, 9) is larger than that between polynucleotides and BNNT(5, 5), which leads to the fact that dispersion of BNNT(9, 9) is better than that of BNNT(5, 5) with the assistance of polynucleotides in aqueous solution. Our study revealed the molecular-level dispersion mechanism of BNNT with the assistance of polynucleotides in aqueous solution. It shades a light on the understanding of dispersion of single wall nanotubes by biomolecules.

摘要

由于氮化硼纳米管(BNNT)具有独特的电学和力学性能,BNNT 已经成为许多潜在应用的有前途的材料,特别是在生物医学领域。了解生物分子在水溶液中对 BNNT 的分散对于其在生物医学应用中的使用至关重要。在这项研究中,通过分子动力学(MD)模拟研究了水溶液中被多核苷酸包裹的 BNNT。我们的结果表明,被多核苷酸包裹的 BNNT 可以极大地阻碍 BNNT 的聚集并提高 BNNT 在水溶液中的分散性。多核苷酸对 BNNT 的分散的辅助作用受多核苷酸在 BNNT 上的包裹方式的极大影响,这主要取决于两个因素:多核苷酸的类型和 BNNT 的半径。多核苷酸与 BNNT(9,9)之间的相互作用大于多核苷酸与 BNNT(5,5)之间的相互作用,这导致在水溶液中多核苷酸的辅助下,BNNT(9,9)的分散性优于 BNNT(5,5)的分散性。我们的研究揭示了水溶液中多核苷酸辅助 BNNT 分子水平分散的机制。它为理解生物分子对单壁纳米管的分散提供了线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e278/5177943/9be2d29fb3ad/srep39747-f1.jpg

相似文献

2
Dispersion of Boron Nitride Nanotubes by Pluronic Triblock Copolymer in Aqueous Solution.
Polymers (Basel). 2019 Apr 1;11(4):582. doi: 10.3390/polym11040582.
3
Surfactant-assisted individualization and dispersion of boron nitride nanotubes.
Nanoscale Adv. 2018 Dec 17;1(3):1096-1103. doi: 10.1039/c8na00315g. eCollection 2019 Mar 12.
4
Boron Nitride Nanotube (BNNT) Membranes for Energy and Environmental Applications.
Membranes (Basel). 2020 Dec 16;10(12):430. doi: 10.3390/membranes10120430.
5
Interaction of DNA-Complexed Boron Nitride Nanotubes and Cosolvents Impacts Dispersion and Length Characteristics.
Langmuir. 2021 Sep 21;37(37):10934-10944. doi: 10.1021/acs.langmuir.1c01309. Epub 2021 Sep 8.
6
High-Performance Field-Emission Properties of Boron Nitride Nanotube Field Emitters.
ACS Appl Mater Interfaces. 2017 Jan 18;9(2):1562-1568. doi: 10.1021/acsami.6b10713. Epub 2017 Jan 5.
7
Highly Aligned Array of Heterostructured Polyflourene-Isolated Boron Nitride and Carbon Nanotubes.
ACS Appl Mater Interfaces. 2021 Mar 17;13(10):12417-12424. doi: 10.1021/acsami.1c02315. Epub 2021 Mar 2.
9
Acute in vitro and in vivo toxicity of a commercial grade boron nitride nanotube mixture.
Nanotoxicology. 2017 Oct;11(8):1040-1058. doi: 10.1080/17435390.2017.1390177. Epub 2017 Nov 2.
10
Dispersion of boron nitride nanotubes in aqueous solution by simple aromatic molecules.
J Nanosci Nanotechnol. 2014 Apr;14(4):3028-33. doi: 10.1166/jnn.2014.8579.

引用本文的文献

2
Hybrid Ni-Boron Nitride Nanotube Magnetic Semiconductor-A New Material for Spintronics.
ACS Omega. 2020 Aug 4;5(32):20014-20020. doi: 10.1021/acsomega.0c01408. eCollection 2020 Aug 18.

本文引用的文献

1
Charge-tunable absorption behavior of DNA on graphene.
J Mater Chem B. 2015 Jun 28;3(24):4814-4820. doi: 10.1039/c5tb00635j. Epub 2015 May 29.
2
Hexagonal boron nitride and water interaction parameters.
J Chem Phys. 2016 Apr 28;144(16):164118. doi: 10.1063/1.4947094.
3
Boron nitride nanotube as a delivery system for platinum drugs: Drug encapsulation and diffusion coefficient prediction.
Eur J Pharm Sci. 2016 Jun 10;88:291-7. doi: 10.1016/j.ejps.2016.04.011. Epub 2016 Apr 12.
4
Charge-tunable insertion process of carbon nanotubes into DNA nanotubes.
J Mol Graph Model. 2016 May;66:20-5. doi: 10.1016/j.jmgm.2016.03.006. Epub 2016 Mar 23.
5
Boron nitride nanotubes as vehicles for intracellular delivery of fluorescent drugs and probes.
Nanomedicine (Lond). 2016;11(5):447-63. doi: 10.2217/nnm.15.214. Epub 2016 Feb 19.
6
Bioapplications of boron nitride nanotubes.
Nanomedicine (Lond). 2015 Nov;10(22):3315-9. doi: 10.2217/nnm.15.148. Epub 2015 Oct 8.
8
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
9
Ultrahigh interlayer friction in multiwalled boron nitride nanotubes.
Nat Mater. 2014 Jul;13(7):688-93. doi: 10.1038/nmat3985. Epub 2014 Jun 1.
10
Strong oxidation resistance of atomically thin boron nitride nanosheets.
ACS Nano. 2014 Feb 25;8(2):1457-62. doi: 10.1021/nn500059s. Epub 2014 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验