Suppr超能文献

探究核小体核心颗粒中簇状损伤内无碱基位点处增强的双链断裂形成

Probing Enhanced Double-Strand Break Formation at Abasic Sites within Clustered Lesions in Nucleosome Core Particles.

作者信息

Banerjee Samya, Chakraborty Supratim, Jacinto Marco Paolo, Paul Michael D, Balster Morgan V, Greenberg Marc M

机构信息

Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States.

出版信息

Biochemistry. 2017 Jan 10;56(1):14-21. doi: 10.1021/acs.biochem.6b01144. Epub 2016 Dec 22.

Abstract

DNA is rapidly cleaved under mild alkaline conditions at apyrimidinic/apurinic sites, but the half-life is several weeks in phosphate buffer (pH 7.5). However, abasic sites are ∼100-fold more reactive within nucleosome core particles (NCPs). Histone proteins catalyze the strand scission, and at superhelical location 1.5, the histone H4 tail is largely responsible for the accelerated cleavage. The rate constant for strand scission at an abasic site is enhanced further in a nucleosome core particle when it is part of a bistranded lesion containing a proximal strand break. Cleavage of this form results in a highly deleterious double-strand break. This acceleration is dependent upon the position of the abasic lesion in the NCP and its structure. The enhancement in cleavage rate at an apurinic/apyrimidinic site rapidly drops off as the distance between the strand break and abasic site increases and is negligible once the two forms of damage are separated by 7 bp. However, the enhancement of the rate of double-strand break formation increases when the size of the gap is increased from one to two nucleotides. In contrast, the cleavage rate enhancement at 2-deoxyribonolactone within bistranded lesions is more modest, and it is similar in free DNA and nucleosome core particles. We postulate that the enhanced rate of double-strand break formation at bistranded lesions containing apurinic/apyrimidinic sites within nucleosome core particles is a general phenomenon and is due to increased DNA flexibility.

摘要

在温和碱性条件下,DNA在无嘧啶/无嘌呤位点会迅速断裂,但其在磷酸盐缓冲液(pH 7.5)中的半衰期为几周。然而,在核小体核心颗粒(NCP)中,无碱基位点的反应活性要高约100倍。组蛋白催化链断裂,在超螺旋位置1.5处,组蛋白H4尾巴在很大程度上导致了断裂加速。当无碱基位点作为包含近端链断裂的双链损伤的一部分时,其在核小体核心颗粒中的链断裂速率常数会进一步提高。这种形式的断裂会导致极具危害性的双链断裂。这种加速取决于无碱基损伤在NCP中的位置及其结构。随着链断裂与无碱基位点之间的距离增加,无嘧啶/无嘌呤位点的断裂速率增强迅速下降,一旦两种损伤形式相隔7个碱基对,这种增强就可以忽略不计。然而,当缺口大小从一个核苷酸增加到两个核苷酸时,双链断裂形成速率的增强会增加。相比之下,双链损伤中2-脱氧核糖内酯的断裂速率增强较为适度,在游离DNA和核小体核心颗粒中相似。我们推测,在核小体核心颗粒中包含无嘧啶/无嘌呤位点的双链损伤处,双链断裂形成速率的增强是一种普遍现象,并且是由于DNA柔韧性增加所致。

相似文献

1
Probing Enhanced Double-Strand Break Formation at Abasic Sites within Clustered Lesions in Nucleosome Core Particles.
Biochemistry. 2017 Jan 10;56(1):14-21. doi: 10.1021/acs.biochem.6b01144. Epub 2016 Dec 22.
2
Rapid DNA-protein cross-linking and strand scission by an abasic site in a nucleosome core particle.
Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22475-80. doi: 10.1073/pnas.1012860108. Epub 2010 Dec 13.
3
Enhanced Cleavage at Abasic Sites within Clustered Lesions in Nucleosome Core Particles.
Chembiochem. 2018 Oct 4;19(19):2061-2065. doi: 10.1002/cbic.201800338. Epub 2018 Aug 24.
4
Mechanistic studies on histone catalyzed cleavage of apyrimidinic/apurinic sites in nucleosome core particles.
J Am Chem Soc. 2012 Oct 10;134(40):16734-41. doi: 10.1021/ja306858m. Epub 2012 Sep 28.
5
Impact of abasic site orientation within nucleosomes on human APE1 endonuclease activity.
Mutat Res. 2014 Aug-Sep;766-767:19-24. doi: 10.1016/j.mrfmmm.2014.05.008. Epub 2014 Jun 6.
6
A Dynamic View of the Interaction of Histone Tails with Clustered Abasic Sites in a Nucleosome Core Particle.
J Phys Chem Lett. 2021 Jul 1;12(25):6014-6019. doi: 10.1021/acs.jpclett.1c01058. Epub 2021 Jun 24.
7
Nucleosome core particle-catalyzed strand scission at abasic sites.
Biochemistry. 2013 Mar 26;52(12):2157-64. doi: 10.1021/bi3010076. Epub 2013 Mar 12.
8
Abasic and oxidized abasic site reactivity in DNA: enzyme inhibition, cross-linking, and nucleosome catalyzed reactions.
Acc Chem Res. 2014 Feb 18;47(2):646-55. doi: 10.1021/ar400229d. Epub 2013 Dec 26.
9
Histone-catalyzed cleavage of nucleosomal DNA containing 2-deoxyribonolactone.
J Am Chem Soc. 2012 May 16;134(19):8090-3. doi: 10.1021/ja302993h. Epub 2012 May 2.
10
Condensation of DNA--a putative obstruction for repair process in abasic clustered DNA damage.
DNA Repair (Amst). 2013 Jun 1;12(6):450-7. doi: 10.1016/j.dnarep.2013.03.002. Epub 2013 Apr 9.

引用本文的文献

1
DNA damage and repair in the nucleosome: insights from computational methods.
Biophys Rev. 2024 Mar 12;16(3):345-356. doi: 10.1007/s12551-024-01183-9. eCollection 2024 Jun.
2
DNA Damage Response and Repair in Boron Neutron Capture Therapy.
Genes (Basel). 2023 Jan 2;14(1):127. doi: 10.3390/genes14010127.
3
Participation of Histones in DNA Damage and Repair within Nucleosome Core Particles: Mechanism and Applications.
Acc Chem Res. 2022 Apr 5;55(7):1059-1073. doi: 10.1021/acs.accounts.2c00041. Epub 2022 Mar 10.
4
Nucleosomal embedding reshapes the dynamics of abasic sites.
Sci Rep. 2020 Oct 14;10(1):17314. doi: 10.1038/s41598-020-73997-y.
5
Mammalian DNA Polymerase Kappa Activity and Specificity.
Molecules. 2019 Aug 1;24(15):2805. doi: 10.3390/molecules24152805.
6
Effect of Nucleosome Assembly on Alkylation by a Dynamic Electrophile.
Chem Res Toxicol. 2019 May 20;32(5):917-925. doi: 10.1021/acs.chemrestox.9b00057. Epub 2019 Mar 27.
7
Enhanced Cleavage at Abasic Sites within Clustered Lesions in Nucleosome Core Particles.
Chembiochem. 2018 Oct 4;19(19):2061-2065. doi: 10.1002/cbic.201800338. Epub 2018 Aug 24.

本文引用的文献

1
Correlation of bistranded clustered abasic DNA lesion processing with structural and dynamic DNA helix distortion.
Nucleic Acids Res. 2016 Oct 14;44(18):8588-8599. doi: 10.1093/nar/gkw773. Epub 2016 Sep 1.
2
Nuclear Magnetic Resonance Solution Structure of DNA Featuring Clustered 2'-Deoxyribonolactone and 8-Oxoguanine Lesions.
Biochemistry. 2016 Jul 19;55(28):3899-906. doi: 10.1021/acs.biochem.6b00396. Epub 2016 Jul 8.
3
Rapid Histone-Catalyzed DNA Lesion Excision and Accompanying Protein Modification in Nucleosomes and Nucleosome Core Particles.
J Am Chem Soc. 2015 Sep 2;137(34):11022-31. doi: 10.1021/jacs.5b05478. Epub 2015 Aug 20.
4
Oxidatively induced DNA damage and its repair in cancer.
Mutat Res Rev Mutat Res. 2015 Jan-Mar;763:212-45. doi: 10.1016/j.mrrev.2014.11.002. Epub 2014 Nov 25.
5
Double-strand breaks from a radical commonly produced by DNA-damaging agents.
Chem Res Toxicol. 2015 Apr 20;28(4):810-6. doi: 10.1021/acs.chemrestox.5b00032. Epub 2015 Mar 9.
6
DNA double-strand break repair inhibitors as cancer therapeutics.
Chem Biol. 2015 Jan 22;22(1):17-29. doi: 10.1016/j.chembiol.2014.11.013. Epub 2015 Jan 8.
7
Probing interactions between lysine residues in histone tails and nucleosomal DNA via product and kinetic analysis.
ACS Chem Biol. 2015 Feb 20;10(2):622-30. doi: 10.1021/cb500737y. Epub 2014 Dec 5.
8
The cytotoxicity of (-)-lomaiviticin A arises from induction of double-strand breaks in DNA.
Nat Chem. 2014 Jun;6(6):504-10. doi: 10.1038/nchem.1944. Epub 2014 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验