Palladino Elisa N D, Wang Wen-Yi, Albert Carolyn J, Langhi Cédric, Baldán Ángel, Ford David A
Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104.
Edward A. Doisy Department of Biochemistry and Molecular Biology and Center for Cardiovascular Research, Saint Louis University School of Medicine, St. Louis, MO 63104
J Lipid Res. 2017 Feb;58(2):317-324. doi: 10.1194/jlr.M069740. Epub 2016 Dec 22.
α-Chlorofatty aldehydes are generated from myeloperoxidase-derived HOCl targeting plasmalogens, and are subsequently oxidized to α-chlorofatty acids (α-ClFAs). The catabolic pathway for α-ClFA is initiated by ω-oxidation. Here, we examine PPAR-α activation as a mechanism to increase α-ClFA catabolism. Pretreating both HepG2 cells and primary mouse hepatocytes with the PPAR-α agonist, pirinixic acid (Wy 14643), increased the production of α-chlorodicarboxylic acids (α-ClDCAs) in cells treated with exogenous α-ClFA. Additionally, α-ClDCA production in Wy 14643-pretreated wild-type mouse hepatocytes was accompanied by a reduction in cellular free α-ClFA. The dependence of PPAR-α-accelerated α-ClFA catabolism was further demonstrated by both impaired metabolism in mouse PPAR-α hepatocytes and decreased clearance of plasma α-ClFA in PPAR-α mice. Furthermore, Wy 14643 treatments decreased plasma 2-chlorohexadecanoic acid levels in wild-type mice. Additional studies showed that α-ClFA increases PPAR-α, PPAR-δ, and PPAR-γ activities, as well as mRNA expression of the PPAR-α target genes, CD36, CPT1a, Cyp4a10, and CIDEC. Collectively, these results indicate that PPAR-α accelerates important pathways for the clearance of α-ClFA, and α-ClFA may, in part, accelerate its catabolism by serving as a ligand for PPAR-α.
α-氯代脂肪醛由髓过氧化物酶衍生的次氯酸靶向缩醛磷脂生成,随后被氧化为α-氯代脂肪酸(α-ClFAs)。α-ClFA的分解代谢途径由ω-氧化启动。在此,我们研究过氧化物酶体增殖物激活受体-α(PPAR-α)激活作为增加α-ClFA分解代谢的一种机制。用PPAR-α激动剂匹立尼酸(Wy 14643)预处理HepG2细胞和原代小鼠肝细胞,可增加用外源性α-ClFA处理的细胞中α-氯代二羧酸(α-ClDCAs)的产生。此外,在Wy 14643预处理的野生型小鼠肝细胞中,α-ClDCA的产生伴随着细胞游离α-ClFA的减少。小鼠PPAR-α肝细胞中代谢受损以及PPAR-α小鼠血浆α-ClFA清除率降低,进一步证明了PPAR-α加速α-ClFA分解代谢的依赖性。此外,Wy 14643处理降低了野生型小鼠血浆中2-氯十六烷酸水平。额外的研究表明,α-ClFA增加PPAR-α、PPAR-δ和PPAR-γ的活性,以及PPAR-α靶基因CD36、CPT1a、Cyp4a10和CIDEC的mRNA表达。总体而言,这些结果表明PPAR-α加速了α-ClFA清除的重要途径,并且α-ClFA可能部分地通过作为PPAR-α的配体来加速其分解代谢。