Aartsen M G, Abraham K, Ackermann M, Adams J, Aguilar J A, Ahlers M, Ahrens M, Altmann D, Andeen K, Anderson T, Ansseau I, Anton G, Archinger M, Argüelles C, Auffenberg J, Axani S, Bai X, Barwick S W, Baum V, Bay R, Beatty J J, Becker Tjus J, Becker K-H, BenZvi S, Berghaus P, Berley D, Bernardini E, Bernhard A, Besson D Z, Binder G, Bindig D, Bissok M, Blaufuss E, Blot S, Bohm C, Börner M, Bos F, Bose D, Böser S, Botner O, Braun J, Brayeur L, Bretz H-P, Burgman A, Carver T, Casier M, Cheung E, Chirkin D, Christov A, Clark K, Classen L, Coenders S, Collin G H, Conrad J M, Cowen D F, Cross R, Day M, de André J P A M, De Clercq C, Del Pino Rosendo E, Dembinski H, De Ridder S, Desiati P, de Vries K D, de Wasseige G, de With M, DeYoung T, Díaz-Vélez J C, di Lorenzo V, Dujmovic H, Dumm J P, Dunkman M, Eberhardt B, Ehrhardt T, Eichmann B, Eller P, Euler S, Evenson P A, Fahey S, Fazely A R, Feintzeig J, Felde J, Filimonov K, Finley C, Flis S, Fösig C-C, Franckowiak A, Friedman E, Fuchs T, Gaisser T K, Gallagher J, Gerhardt L, Ghorbani K, Giang W, Gladstone L, Glagla M, Glüsenkamp T, Goldschmidt A, Golup G, Gonzalez J G, Grant D, Griffith Z, Haack C, Haj Ismail A, Hallgren A, Halzen F, Hansen E, Hansmann B, Hansmann T, Hanson K, Hebecker D, Heereman D, Helbing K, Hellauer R, Hickford S, Hignight J, Hill G C, Hoffman K D, Hoffmann R, Holzapfel K, Hoshina K, Huang F, Huber M, Hultqvist K, In S, Ishihara A, Jacobi E, Japaridze G S, Jeong M, Jero K, Jones B J P, Jurkovic M, Kappes A, Karg T, Karle A, Katz U, Kauer M, Keivani A, Kelley J L, Kemp J, Kheirandish A, Kim M, Kintscher T, Kiryluk J, Kittler T, Klein S R, Kohnen G, Koirala R, Kolanoski H, Konietz R, Köpke L, Kopper C, Kopper S, Koskinen D J, Kowalski M, Krings K, Kroll M, Krückl G, Krüger C, Kunnen J, Kunwar S, Kurahashi N, Kuwabara T, Labare M, Lanfranchi J L, Larson M J, Lauber F, Lennarz D, Lesiak-Bzdak M, Leuermann M, Leuner J, Lu L, Lünemann J, Madsen J, Maggi G, Mahn K B M, Mancina S, Mandelartz M, Maruyama R, Mase K, Maunu R, McNally F, Meagher K, Medici M, Meier M, Meli A, Menne T, Merino G, Meures T, Miarecki S, Mohrmann L, Montaruli T, Moulai M, Nahnhauer R, Naumann U, Neer G, Niederhausen H, Nowicki S C, Nygren D R, Obertacke Pollmann A, Olivas A, O'Murchadha A, Palczewski T, Pandya H, Pankova D V, Penek Ö, Pepper J A, Pérez de Los Heros C, Pieloth D, Pinat E, Price P B, Przybylski G T, Quinnan M, Raab C, Rädel L, Rameez M, Rawlins K, Reimann R, Relethford B, Relich M, Resconi E, Rhode W, Richman M, Riedel B, Robertson S, Rongen M, Rott C, Ruhe T, Ryckbosch D, Rysewyk D, Sabbatini L, Sanchez Herrera S E, Sandrock A, Sandroos J, Sarkar S, Satalecka K, Schimp M, Schlunder P, Schmidt T, Schoenen S, Schöneberg S, Schumacher L, Seckel D, Seunarine S, Soldin D, Song M, Spiczak G M, Spiering C, Stahlberg M, Stanev T, Stasik A, Steuer A, Stezelberger T, Stokstad R G, Stößl A, Ström R, Strotjohann N L, Sullivan G W, Sutherland M, Taavola H, Taboada I, Tatar J, Tenholt F, Ter-Antonyan S, Terliuk A, Tešić G, Tilav S, Toale P A, Tobin M N, Toscano S, Tosi D, Tselengidou M, Turcati A, Unger E, Usner M, Vandenbroucke J, van Eijndhoven N, Vanheule S, van Rossem M, van Santen J, Veenkamp J, Vehring M, Voge M, Vraeghe M, Walck C, Wallace A, Wallraff M, Wandkowsky N, Weaver Ch, Weiss M J, Wendt C, Westerhoff S, Whelan B J, Wickmann S, Wiebe K, Wiebusch C H, Wille L, Williams D R, Wills L, Wolf M, Wood T R, Woolsey E, Woschnagg K, Xu D L, Xu X W, Xu Y, Yanez J P, Yodh G, Yoshida S, Zoll M
Department of Physics, University of Adelaide, Adelaide 5005, Australia.
Physik-department, Technische Universität München, D-85748 Garching, Germany.
Phys Rev Lett. 2016 Dec 9;117(24):241101. doi: 10.1103/PhysRevLett.117.241101. Epub 2016 Dec 7.
We report constraints on the sources of ultrahigh-energy cosmic rays (UHECRs) above 10^{9} GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high- energy neutrino-induced events which have deposited energies from 5×10^{5} GeV to above 10^{11} GeV. Two neutrino-induced events with an estimated deposited energy of (2.6±0.3)×10^{6} GeV, the highest neutrino energy observed so far, and (7.7±2.0)×10^{5} GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6σ. The hypothesis that the observed events are of cosmogenic origin is also rejected at >99% CL because of the limited deposited energy and the nonobservation of events at higher energy, while their observation is consistent with an astrophysical origin. Our limits on cosmogenic neutrino fluxes disfavor the UHECR sources having a cosmological evolution stronger than the star formation rate, e.g., active galactic nuclei and γ-ray bursts, assuming proton-dominated UHECRs. Constraints on UHECR sources including mixed and heavy UHECR compositions are obtained for models of neutrino production within UHECR sources. Our limit disfavors a significant part of parameter space for active galactic nuclei and new-born pulsar models. These limits on the ultrahigh-energy neutrino flux models are the most stringent to date.
基于对七年冰立方数据的分析,我们报告了能量高于(10^{9}) GeV的超高能宇宙射线(UHECRs)源的限制。该分析有效地筛选出了沉积能量从(5×10^{5}) GeV到高于(10^{11}) GeV的甚高能中微子诱发事件。探测到两个中微子诱发事件,估计沉积能量分别为((2.6±0.3)×10^{6}) GeV(这是迄今为止观测到的最高中微子能量)和((7.7±2.0)×10^{5}) GeV。仅考虑大气背景来探测这些事件的假设在3.6σ水平被否决。由于沉积能量有限且未观测到更高能量的事件,观测到的事件是宇宙成因的假设在>99%的置信水平也被否决,而它们的观测结果与天体物理起源一致。我们对宇宙成因中微子通量的限制不支持那些宇宙演化比恒星形成率更强的UHECR源,例如活动星系核和伽马射线暴,假设UHECRs以质子为主。对于UHECR源内中微子产生模型,我们获得了包括混合和重UHECR成分的UHECR源的限制。我们的限制不支持活动星系核和新生脉冲星模型的很大一部分参数空间。这些对超高能中微子通量模型的限制是迄今为止最严格的。