Aswath Kumar Akshay Kota, Drahi Angelina, Jacquemet Vincent
Université de Montréal, Département de Pharmacologie et Physiologie , Institut de Génie Biomédical, Montréal, Canada; Hôpital du Sacré-Coeur de Montréal, Centre de Recherche, Montréal, Canada.
Université de Montréal, Département de Pharmacologie et Physiologie , Institut de Génie Biomédical, Montréal, Canada; Hôpital du Sacré-Coeur de Montréal, Centre de Recherche, Montréal, Canada.
Comput Biol Med. 2017 Feb 1;81:55-63. doi: 10.1016/j.compbiomed.2016.12.008. Epub 2016 Dec 18.
Repolarization gradients contribute to arrhythmogenicity. In reaction-diffusion models of cardiac tissue, heterogeneities in action potential duration (APD) can be created by locally modifying an intrinsic membrane kinetics parameter. Electrotonic coupling, however, acts as a confounding factor that modulates APD dispersion.
We developed an algorithm based on a quasi-Newton method that iteratively adjusts the spatial distribution of a membrane parameter to reproduce a pre-defined target APD map in a coupled tissue. The method assumes that the relation between the adjustable parameter and APD is bijective in an isolated cell. Each iteration of the algorithm involved simulating the cardiac reaction-diffusion system with the updated parameter profile for one beat and extracting the APD map. The algorithm was extended to simultaneous estimation of two parameter profiles based on two APD maps at different repolarization thresholds.
The method was validated in 1D, 2D and 3D atrial tissues using synthetic target APD maps with controllable total variation and maximum APD gradient. The adjustable parameter was local acetylcholine concentration. The iterations converged provided that APD gradients were not too steep. Convergence was found to be faster 2-5 iterations) when the maximal gradient was less steep, when APD range was smaller and when tissue conductivity was reduced.
This algorithm provides a tool to automatically generate arrhythmogenic substrates with controllable repolarization gradients and possibly incorporate experimental APD maps into computer models.
复极梯度有助于心律失常的发生。在心脏组织的反应扩散模型中,动作电位时程(APD)的异质性可通过局部改变内在膜动力学参数来产生。然而,电紧张耦合作为一个混杂因素,会调节APD离散度。
我们开发了一种基于拟牛顿法的算法,该算法迭代调整膜参数的空间分布,以在耦合组织中重现预定义的目标APD图。该方法假定在单个细胞中,可调参数与APD之间的关系是双射的。算法的每次迭代都包括用更新后的参数分布模拟心脏反应扩散系统一个心动周期,并提取APD图。该算法被扩展为基于不同复极阈值下的两个APD图同时估计两个参数分布。
该方法在一维、二维和三维心房组织中使用具有可控总变化和最大APD梯度的合成目标APD图进行了验证。可调参数为局部乙酰胆碱浓度。只要APD梯度不太陡,迭代就会收敛。当最大梯度较平缓、APD范围较小时以及组织电导率降低时,收敛速度更快(2 - 5次迭代)。
该算法提供了一种工具,可自动生成具有可控复极梯度的致心律失常基质,并可能将实验性APD图纳入计算机模型。