Suppr超能文献

肌动蛋白网络将纤毛G蛋白偶联受体转运到细胞外囊泡中以调节信号传导。

An Actin Network Dispatches Ciliary GPCRs into Extracellular Vesicles to Modulate Signaling.

作者信息

Nager Andrew R, Goldstein Jaclyn S, Herranz-Pérez Vicente, Portran Didier, Ye Fan, Garcia-Verdugo Jose Manuel, Nachury Maxence V

机构信息

Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA.

Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universitat de València, CIBERNED, 46980 Valencia, Spain; Unidad Mixta de Esclerosis Múltiple y Neurorregeneración, IIS Hospital La Fe-UVEG, 46026 Valencia, Spain.

出版信息

Cell. 2017 Jan 12;168(1-2):252-263.e14. doi: 10.1016/j.cell.2016.11.036. Epub 2016 Dec 22.

Abstract

Signaling receptors dynamically exit cilia upon activation of signaling pathways such as Hedgehog. Here, we find that when activated G protein-coupled receptors (GPCRs) fail to undergo BBSome-mediated retrieval from cilia back into the cell, these GPCRs concentrate into membranous buds at the tips of cilia before release into extracellular vesicles named ectosomes. Unexpectedly, actin and the actin regulators drebrin and myosin 6 mediate ectosome release from the tip of cilia. Mirroring signal-dependent retrieval, signal-dependent ectocytosis is a selective and effective process that removes activated signaling molecules from cilia. Congruently, ectocytosis compensates for BBSome defects as ectocytic removal of GPR161, a negative regulator of Hedgehog signaling, permits the appropriate transduction of Hedgehog signals in Bbs mutants. Finally, ciliary receptors that lack retrieval determinants such as the anorexigenic GPCR NPY2R undergo signal-dependent ectocytosis in wild-type cells. Our data show that signal-dependent ectocytosis regulates ciliary signaling in physiological and pathological contexts.

摘要

信号受体在诸如Hedgehog等信号通路激活后会动态地从纤毛中退出。在此,我们发现,当激活的G蛋白偶联受体(GPCR)未能通过BBSome介导从纤毛中回收并回到细胞内时,这些GPCR会在纤毛尖端聚集形成膜性芽,然后释放到名为外泌体的细胞外囊泡中。出乎意料的是,肌动蛋白以及肌动蛋白调节因子脑桥蛋白和肌球蛋白6介导外泌体从纤毛尖端释放。与信号依赖的回收过程类似,信号依赖的胞吐作用是一个选择性且有效的过程,可从纤毛中去除激活的信号分子。同样,胞吐作用可弥补BBSome缺陷,因为通过胞吐作用去除Hedgehog信号的负调节因子GPR161,可使Bbs突变体中Hedgehog信号得以适当转导。最后,缺乏回收决定因素的纤毛受体,如厌食性GPCR NPY2R,在野生型细胞中会发生信号依赖的胞吐作用。我们的数据表明,信号依赖的胞吐作用在生理和病理情况下调节纤毛信号传导。

相似文献

1
An Actin Network Dispatches Ciliary GPCRs into Extracellular Vesicles to Modulate Signaling.
Cell. 2017 Jan 12;168(1-2):252-263.e14. doi: 10.1016/j.cell.2016.11.036. Epub 2016 Dec 22.
2
Ubiquitin chains earmark GPCRs for BBSome-mediated removal from cilia.
J Cell Biol. 2020 Dec 7;219(12). doi: 10.1083/jcb.202003020.
3
BBSome trains remove activated GPCRs from cilia by enabling passage through the transition zone.
J Cell Biol. 2018 May 7;217(5):1847-1868. doi: 10.1083/jcb.201709041. Epub 2018 Feb 26.
4
The ancestral ESCRT protein TOM1L2 selects ubiquitinated cargoes for retrieval from cilia.
Dev Cell. 2023 Apr 24;58(8):677-693.e9. doi: 10.1016/j.devcel.2023.03.003. Epub 2023 Apr 4.
5
Direct visualization of cAMP signaling in primary cilia reveals up-regulation of ciliary GPCR activity following Hedgehog activation.
Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):12066-12071. doi: 10.1073/pnas.1819730116. Epub 2019 May 29.
6
G-protein-coupled receptors and localized signaling in the primary cilium during ventral neural tube patterning.
Birth Defects Res A Clin Mol Teratol. 2015 Jan;103(1):12-9. doi: 10.1002/bdra.23267. Epub 2014 Jun 11.
7
C11ORF74 interacts with the IFT-A complex and participates in ciliary BBSome localization.
J Biochem. 2019 Mar 1;165(3):257-267. doi: 10.1093/jb/mvy100.
8
Ins and outs of GPCR signaling in primary cilia.
EMBO Rep. 2015 Sep;16(9):1099-113. doi: 10.15252/embr.201540530. Epub 2015 Aug 21.
9
Time-resolved proteomics profiling of the ciliary Hedgehog response.
J Cell Biol. 2021 May 3;220(5). doi: 10.1083/jcb.202007207.
10
G-Protein-Coupled Receptor Signaling in Cilia.
Cold Spring Harb Perspect Biol. 2017 Sep 1;9(9):a028183. doi: 10.1101/cshperspect.a028183.

引用本文的文献

2
CCDC66 regulation of cytoskeleton and cilia stability is important for signaling and epithelial organization.
PLoS Biol. 2025 Jul 29;23(7):e3003313. doi: 10.1371/journal.pbio.3003313. eCollection 2025 Jul.
3
Hedgehog pathway, cell cycle, and primary cilium.
Cell Death Discov. 2025 Jul 3;11(1):302. doi: 10.1038/s41420-025-02605-7.
4
Renin-Angiotensin System Autoantibody Network in Parkinson's Disease Patients.
Antioxidants (Basel). 2025 Jun 10;14(6):706. doi: 10.3390/antiox14060706.
5
BBSome: An essential component of hypothalamic regulation of energy homeostasis.
Rev Endocr Metab Disord. 2025 Jun 25. doi: 10.1007/s11154-025-09979-0.
8
A tale of Rabs and the exocyst complex in ciliary trafficking and biogenesis.
Front Cell Dev Biol. 2025 May 6;13:1574638. doi: 10.3389/fcell.2025.1574638. eCollection 2025.
9
Extracellular membrane particles en route to the nucleus - exploring the VOR complex.
Biochem Soc Trans. 2025 Jun 30;53(3):529-546. doi: 10.1042/BST20253005.
10
p62 sorts Lupus La and selected microRNAs into breast cancer-derived exosomes.
bioRxiv. 2025 Mar 20:2025.03.20.644464. doi: 10.1101/2025.03.20.644464.

本文引用的文献

1
Cargo Capture and Bulk Flow in the Early Secretory Pathway.
Annu Rev Cell Dev Biol. 2016 Oct 6;32:197-222. doi: 10.1146/annurev-cellbio-111315-125016. Epub 2016 Jun 8.
2
Extracellular Vesicles: Satellites of Information Transfer in Cancer and Stem Cell Biology.
Dev Cell. 2016 May 23;37(4):301-309. doi: 10.1016/j.devcel.2016.04.019.
3
Smoothened determines β-arrestin-mediated removal of the G protein-coupled receptor Gpr161 from the primary cilium.
J Cell Biol. 2016 Mar 28;212(7):861-75. doi: 10.1083/jcb.201506132. Epub 2016 Mar 21.
4
Ciliary Extracellular Vesicles: Txt Msg Organelles.
Cell Mol Neurobiol. 2016 Apr;36(3):449-57. doi: 10.1007/s10571-016-0345-4. Epub 2016 Mar 17.
5
Trafficking of ciliary G protein-coupled receptors.
Methods Cell Biol. 2016;132:35-54. doi: 10.1016/bs.mcb.2015.11.009. Epub 2016 Jan 28.
6
Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes.
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E968-77. doi: 10.1073/pnas.1521230113. Epub 2016 Feb 8.
7
8
Proteomics of Primary Cilia by Proximity Labeling.
Dev Cell. 2015 Nov 23;35(4):497-512. doi: 10.1016/j.devcel.2015.10.015. Epub 2015 Nov 12.
9
Ins and outs of GPCR signaling in primary cilia.
EMBO Rep. 2015 Sep;16(9):1099-113. doi: 10.15252/embr.201540530. Epub 2015 Aug 21.
10
Accumulation of non-outer segment proteins in the outer segment underlies photoreceptor degeneration in Bardet-Biedl syndrome.
Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):E4400-9. doi: 10.1073/pnas.1510111112. Epub 2015 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验