Suppr超能文献

一种用于模拟生物可吸收聚酯降解的多尺度方法。

A multi-scale method for modeling degradation of bioresorbable polyesters.

作者信息

Zhang Taohong, Zhou Shaonan, Gao Xiaohao, Yang Zhiyong, Sun Leran, Zhang Dezheng

机构信息

Department of Computer, School of Computer and Communication Engineering, University of Science and Technology Beijing (USTB), Beijing 100083, China; Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing 100083, China.

Department of Computer, School of Computer and Communication Engineering, University of Science and Technology Beijing (USTB), Beijing 100083, China; Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing 100083, China.

出版信息

Acta Biomater. 2017 Mar 1;50:462-475. doi: 10.1016/j.actbio.2016.12.046. Epub 2016 Dec 23.

Abstract

UNLABELLED

A multi-scale model using the cellular automata (CA) and kinetic Monte Carlo (KMC) methods is presented to simulate the degradation process of bioresorbable polyesters such as polylactide (PLA), polyglycolide (PGA) and their copolymers. The model considers the underlying chemical and physical events such as polymer chain scission, oligomer production, crystallization induced by polymer chain scissions, oligomer diffusion and microstructure evolution due to erosion of the small chains. A macroscopic device is discretized into an array of mesoscopic cells. Each cellular lattice is assumed to be made of one polymer chain, which undergoes hydrolysis reaction. The polymer chain scission is modeled using a kinetic Monte Carlo method. Oligomer production, chain crystallization and formation of cavities due to polymer collapse are also modeled on the cellular lattice. Oligomer diffusion is modeled by using Fick's laws at the macroscopic scale. The diffusion coefficient is taken as dependent on the porosity caused by the formation of the cavities. The interactions among the microscopic hydrolysis reaction, mesoscopic formation of cavities and macroscopic diffusion are taken into account. The proposed method forms Multi Scale Cellular Monte Carlo Automata (MS-CMCA). The three-scale approach consists of continuous method and discrete method to deal with certainty problem with underlying stochastic phenomenon. Demonstration examples are provided which show that the model can fit with experimental data in the literature very well.

STATEMENT OF SIGNIFICANCE

The original work in this paper is a multi-scale method (including micro scale, mesoscopic scale, macro scale and their coupling) for modeling degradation of bioresorbable polyesters and provides understanding to the process of degradation of biodegradable polymers. The result denotes the solution is reliable. As we know, there have no papers recently to implement three scales modeling and its coupling. There is a two-scale model of amorphous polyester degradation described by Han and Pan (Acta Biomaterialia 2011), our model accounts for effects of re-crystallization to explain the degradation process from three scales and takes into account of copolymers. From our model, the molecular weight distribution with time, chain number with time, degree of crystallinity with time, the evolution of polymer inner shape, weight loss with time (which is found from calculation that both oligomer diffusion and small molecules solution work to the weight loss) can be obtained from the calculation of the three scale model.

摘要

未标注

提出了一种使用细胞自动机(CA)和动力学蒙特卡罗(KMC)方法的多尺度模型,以模拟生物可降解聚酯(如聚乳酸(PLA)、聚乙醇酸(PGA)及其共聚物)的降解过程。该模型考虑了潜在的化学和物理事件,如聚合物链断裂、低聚物生成、由聚合物链断裂引起的结晶、低聚物扩散以及由于小链侵蚀导致的微观结构演变。一个宏观装置被离散化为一系列介观单元。假设每个细胞晶格由一条经历水解反应的聚合物链组成。聚合物链断裂采用动力学蒙特卡罗方法进行建模。低聚物生成、链结晶以及由于聚合物塌陷导致的空洞形成也在细胞晶格上进行建模。低聚物扩散在宏观尺度上使用菲克定律进行建模。扩散系数被视为取决于由空洞形成引起的孔隙率。考虑了微观水解反应、介观空洞形成和宏观扩散之间的相互作用。所提出的方法形成了多尺度细胞蒙特卡罗自动机(MS-CMCA)。三尺度方法由连续方法和离散方法组成,用于处理具有潜在随机现象的确定性问题。提供了示例,表明该模型能够很好地拟合文献中的实验数据。

意义声明

本文的原创工作是一种用于模拟生物可降解聚酯降解的多尺度方法(包括微观尺度、介观尺度、宏观尺度及其耦合),并为可生物降解聚合物的降解过程提供了理解。结果表明该解决方案是可靠的。据我们所知,最近没有论文实现三尺度建模及其耦合。Han和Pan(《生物材料学报》,2011年)描述了一种无定形聚酯降解的两尺度模型,我们的模型考虑了再结晶的影响,从三个尺度解释降解过程,并考虑了共聚物。从我们的模型中,可以通过三尺度模型的计算得到分子量随时间的分布、链数随时间的变化、结晶度随时间的变化、聚合物内部形状的演变、重量随时间的损失(通过计算发现低聚物扩散和小分子溶解都对重量损失有影响)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验