Suppr超能文献

基于远程光电容积脉搏波描记法的稳健呼吸检测

Robust respiration detection from remote photoplethysmography.

作者信息

van Gastel Mark, Stuijk Sander, de Haan Gerard

机构信息

Department of Electrical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands.

Department of Electrical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands; Philips Research, High Tech Campus 36, 5656AE, Eindhoven, The Netherlands.

出版信息

Biomed Opt Express. 2016 Nov 3;7(12):4941-4957. doi: 10.1364/BOE.7.004941. eCollection 2016 Dec 1.

Abstract

Continuous monitoring of respiration is essential for early detection of critical illness. Current methods require sensors attached to the body and/or are not robust to subject motion. Alternative camera-based solutions have been presented using motion vectors and remote photoplethysmography. In this work, we present a non-contact camera-based method to detect respiration, which can operate in both visible and dark lighting conditions by detecting the respiratory-induced colour differences of the skin. We make use of the close similarity between skin colour variations caused by the beating of the heart and those caused by respiration, leading to a much improved signal quality compared to single-channel approaches. Essentially, we propose to find the linear combination of colour channels which suppresses the distortions best in a frequency band including pulse rate, and subsequently we use this same linear combination to extract the respiratory signal in a lower frequency band. Evaluation results obtained from recordings on healthy subjects which perform challenging scenarios, including motion, show that respiration can be accurately detected over the entire range of respiratory frequencies, with a correlation coefficient of 0.96 in visible light and 0.98 in infrared, compared to 0.86 with the best-performing non-contact benchmark algorithm. Furthermore, evaluation on a set of videos recorded in a Neonatal Intensive Care Unit (NICU) shows that this technique looks promising as a future alternative to current contact-sensors showing a correlation coefficient of 0.87.

摘要

持续监测呼吸对于危重病的早期检测至关重要。当前的方法需要将传感器附着在身体上,并且/或者对受试者的运动不够稳健。已经提出了使用运动矢量和远程光电容积描记法的基于摄像头的替代解决方案。在这项工作中,我们提出了一种基于摄像头的非接触式呼吸检测方法,该方法可以通过检测呼吸引起的皮肤颜色差异在可见光和暗光条件下运行。我们利用了由心脏跳动引起的皮肤颜色变化与由呼吸引起的皮肤颜色变化之间的高度相似性,与单通道方法相比,这使得信号质量有了很大提高。本质上,我们建议找到颜色通道的线性组合,该组合在包括脉搏率的频带中能最佳地抑制失真,随后我们使用相同的线性组合在较低频带中提取呼吸信号。从对健康受试者进行具有挑战性场景(包括运动)的记录中获得的评估结果表明,在整个呼吸频率范围内都可以准确检测到呼吸,在可见光下相关系数为0.96,在红外光下为0.98,而性能最佳的非接触式基准算法的相关系数为0.86。此外,对在新生儿重症监护病房(NICU)记录的一组视频的评估表明,作为当前接触式传感器的未来替代方案,该技术看起来很有前景,相关系数为0.87。

相似文献

1
Robust respiration detection from remote photoplethysmography.
Biomed Opt Express. 2016 Nov 3;7(12):4941-4957. doi: 10.1364/BOE.7.004941. eCollection 2016 Dec 1.
3
Remote sensing of physiological signs using a machine vision system.
J Med Eng Technol. 2017 Jul;41(5):396-405. doi: 10.1080/03091902.2017.1313326. Epub 2017 Apr 27.
4
Exploiting Weak Head Movements for Camera-based Respiration Detection.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:6059-6062. doi: 10.1109/EMBC.2019.8856387.
5
DistancePPG: Robust non-contact vital signs monitoring using a camera.
Biomed Opt Express. 2015 Apr 6;6(5):1565-88. doi: 10.1364/BOE.6.001565. eCollection 2015 May 1.
6
Non-contact heart rate monitoring utilizing camera photoplethysmography in the neonatal intensive care unit - a pilot study.
Early Hum Dev. 2013 Dec;89(12):943-8. doi: 10.1016/j.earlhumdev.2013.09.016. Epub 2013 Oct 14.
7
Non-contact sensing of neonatal pulse rate using camera-based imaging: a clinical feasibility study.
Physiol Meas. 2020 Mar 9;41(2):024001. doi: 10.1088/1361-6579/ab755c.
8
Motion Robust Remote-PPG in Infrared.
IEEE Trans Biomed Eng. 2015 May;62(5):1425-33. doi: 10.1109/TBME.2015.2390261. Epub 2015 Jan 9.
9
Continuous non-contact vital sign monitoring in neonatal intensive care unit.
Healthc Technol Lett. 2014 Sep 23;1(3):87-91. doi: 10.1049/htl.2014.0077. eCollection 2014 Sep.
10
Robust heart rate from fitness videos.
Physiol Meas. 2017 Jun;38(6):1023-1044. doi: 10.1088/1361-6579/aa6d02. Epub 2017 May 8.

引用本文的文献

1
Smart Recognition COVID-19 System to Predict Suspicious Persons Based on Face Features.
J Electr Eng Technol. 2021;16(3):1601-1606. doi: 10.1007/s42835-021-00671-2. Epub 2021 Feb 15.
3
Contactless SpO with an RGB camera: experimental proof of calibrated SpO.
Biomed Opt Express. 2022 Dec 1;13(12):6791-6802. doi: 10.1364/BOE.471332.
4
Non-contact respiratory rate monitoring using thermal and visible imaging: a pilot study on neonates.
J Clin Monit Comput. 2023 Jun;37(3):815-828. doi: 10.1007/s10877-022-00945-8. Epub 2022 Dec 4.
5
Multitask Siamese Network for Remote Photoplethysmography and Respiration Estimation.
Sensors (Basel). 2022 Jul 7;22(14):5101. doi: 10.3390/s22145101.
6
Contact and Remote Breathing Rate Monitoring Techniques: A Review.
IEEE Sens J. 2021 Apr 12;21(13):14569-14586. doi: 10.1109/JSEN.2021.3072607. eCollection 2021 Jul 1.
7
Contactless Vital Signs Monitoring From Videos Recorded With Digital Cameras: An Overview.
Front Physiol. 2022 Feb 18;13:801709. doi: 10.3389/fphys.2022.801709. eCollection 2022.
8
Non-contact physiological monitoring of post-operative patients in the intensive care unit.
NPJ Digit Med. 2022 Jan 13;5(1):4. doi: 10.1038/s41746-021-00543-z.
9
Advancing PPG Signal Quality and Know-How Through Knowledge Translation-From Experts to Student and Researcher.
Front Digit Health. 2020 Dec 21;2:619692. doi: 10.3389/fdgth.2020.619692. eCollection 2020.
10
Enhanced Contactless Vital Sign Estimation from Real-Time Multimodal 3D Image Data.
J Imaging. 2020 Nov 12;6(11):123. doi: 10.3390/jimaging6110123.

本文引用的文献

1
Computer-Vision-Guided Human Pulse Rate Estimation: A Review.
IEEE Rev Biomed Eng. 2016;9:91-105. doi: 10.1109/RBME.2016.2551778. Epub 2016 Apr 7.
2
An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram.
Physiol Meas. 2016 Apr;37(4):610-26. doi: 10.1088/0967-3334/37/4/610. Epub 2016 Mar 30.
3
Estimation of respiratory rate from photoplethysmographic imaging videos compared to pulse oximetry.
IEEE J Biomed Health Inform. 2015 Jul;19(4):1331-8. doi: 10.1109/JBHI.2015.2429746. Epub 2015 May 5.
4
Motion Robust Remote-PPG in Infrared.
IEEE Trans Biomed Eng. 2015 May;62(5):1425-33. doi: 10.1109/TBME.2015.2390261. Epub 2015 Jan 9.
5
Improved motion robustness of remote-PPG by using the blood volume pulse signature.
Physiol Meas. 2014 Aug 27;35(9):1913-1926. doi: 10.1088/0967-3334/35/9/1913.
6
Remote measurements of heart and respiration rates for telemedicine.
PLoS One. 2013 Oct 8;8(10):e71384. doi: 10.1371/journal.pone.0071384. eCollection 2013.
7
Camera-based system for contactless monitoring of respiration.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:2672-5. doi: 10.1109/EMBC.2013.6610090.
8
Robust pulse rate from chrominance-based rPPG.
IEEE Trans Biomed Eng. 2013 Oct;60(10):2878-86. doi: 10.1109/TBME.2013.2266196. Epub 2013 Jun 4.
9
Respiration signals from photoplethysmography.
Anesth Analg. 2013 Oct;117(4):859-865. doi: 10.1213/ANE.0b013e31828098b2. Epub 2013 Feb 28.
10
Developing an algorithm for pulse oximetry derived respiratory rate (RR(oxi)): a healthy volunteer study.
J Clin Monit Comput. 2012 Feb;26(1):45-51. doi: 10.1007/s10877-011-9332-y. Epub 2012 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验