Suppr超能文献

主动外观模型的快速精确牛顿法和双向拟合

Fast and Exact Newton and Bidirectional Fitting of Active Appearance Models.

作者信息

Kossaifi Jean, Tzimiropoulos Georgios Yorgos, Pantic Maja

出版信息

IEEE Trans Image Process. 2017 Feb;26(2):1040-1053. doi: 10.1109/TIP.2016.2642828. Epub 2016 Dec 21.

Abstract

Active appearance models (AAMs) are generative models of shape and appearance that have proven very attractive for their ability to handle wide changes in illumination, pose, and occlusion when trained in the wild, while not requiring large training data set like regression-based or deep learning methods. The problem of fitting an AAM is usually formulated as a non-linear least squares one and the main way of solving it is a standard Gauss-Newton algorithm. In this paper, we extend AAMs in two ways: we first extend the Gauss-Newton framework by formulating a bidirectional fitting method that deforms both the image and the template to fit a new instance. We then formulate a second order method by deriving an efficient Newton method for AAMs fitting. We derive both methods in a unified framework for two types of AAMs, holistic and part-based, and additionally show how to exploit the structure in the problem to derive fast yet exact solutions. We perform a thorough evaluation of all algorithms on three challenging and recently annotated in-the-wild data sets, and investigate fitting accuracy, convergence properties, and the influence of noise in the initialization. We compare our proposed methods to other algorithms and show that they yield state-of-the-art results, out-performing other methods while having superior convergence properties.

摘要

主动外观模型(AAM)是形状和外观的生成模型,在自然环境中训练时,因其能够处理光照、姿态和遮挡的广泛变化而极具吸引力,同时不像基于回归或深度学习的方法那样需要大量训练数据集。拟合AAM的问题通常被表述为非线性最小二乘问题,解决该问题的主要方法是标准的高斯 - 牛顿算法。在本文中,我们从两个方面扩展了AAM:首先,我们通过制定一种双向拟合方法来扩展高斯 - 牛顿框架,该方法使图像和模板都变形以拟合新实例。然后,我们通过推导一种用于AAM拟合的高效牛顿方法来制定二阶方法。我们在一个统一的框架中为两种类型的AAM(整体型和基于部件型)推导这两种方法,并额外展示了如何利用问题中的结构来推导快速且精确的解决方案。我们在三个具有挑战性且最近标注的自然环境数据集上对所有算法进行了全面评估,并研究了拟合精度、收敛特性以及初始化中噪声的影响。我们将我们提出的方法与其他算法进行比较,结果表明它们产生了最优的结果,在性能上优于其他方法,同时具有卓越的收敛特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验