Boscaro Vittorio, Rossi Alessia, Vannini Claudia, Verni Franco, Fokin Sergei I, Petroni Giulio
Dipartimento di Biologia, Unità di Zoologia-Antropologia, Università di Pisa, 56126, Pisa, Italy.
Department of Botany, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
Microb Ecol. 2017 May;73(4):865-875. doi: 10.1007/s00248-016-0912-8. Epub 2016 Dec 28.
Molecular surveys of eukaryotic microbial communities employing high-throughput sequencing (HTS) techniques are rapidly supplanting traditional morphological approaches due to their larger data output and reduced bench work time. Here, we directly compare morphological and Illumina data obtained from the same samples, in an effort to characterize ciliate faunas from sediments in freshwater environments. We show how in silico processing affects the final outcome of our HTS analysis, providing evidence that quality filtering protocols strongly impact the number of predicted taxa, but not downstream conclusions such as biogeography patterns. We determine the abundance distribution of ciliates, showing that a small fraction of abundant taxa dominates read counts. At the same time, we advance reasons to believe that biases affecting HTS abundances may be significant enough to blur part of the underlying biological picture. We confirmed that the HTS approach detects many more taxa than morphological inspections, and highlight how the difference varies among taxonomic groups. Finally, we hypothesize that the two datasets actually correspond to different conceptions of "diversity," and consequently that neither is entirely superior to the other when investigating environmental protists.
采用高通量测序(HTS)技术对真核微生物群落进行分子调查,正因其更大的数据输出量和减少的实验室工作时间而迅速取代传统的形态学方法。在此,我们直接比较从相同样本中获得的形态学数据和Illumina数据,以努力描述淡水环境沉积物中的纤毛虫动物区系。我们展示了计算机处理如何影响我们的HTS分析的最终结果,提供了证据表明质量过滤方案强烈影响预测分类单元的数量,但不影响诸如生物地理学模式等下游结论。我们确定了纤毛虫的丰度分布,表明一小部分丰富的分类单元主导了读数计数。同时,我们提出理由认为影响HTS丰度的偏差可能足够大,足以模糊部分潜在的生物学图景。我们证实HTS方法检测到的分类单元比形态学检查多得多,并强调这种差异在不同分类群之间如何变化。最后,我们推测这两个数据集实际上对应于“多样性”的不同概念,因此在研究环境原生生物时,两者都不完全优于对方。