Suppr超能文献

生物大分子弹性网络模型和基于结构模型的涨落匹配方法。

Fluctuation matching approach for elastic network model and structure-based model of biomacromolecules.

作者信息

Bope Christian Domilongo, Tong Dudu, Li Xiuting, Lu Lanyuan

机构信息

School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.

School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.

出版信息

Prog Biophys Mol Biol. 2017 Sep;128:100-112. doi: 10.1016/j.pbiomolbio.2016.12.006. Epub 2016 Dec 30.

Abstract

Elastic network models (ENMs) based on simple harmonic potential energy function have been proven over the last decade to be reliable computational models for understanding the intrinsic dynamics of biomacromolecules. In the original ENMs, the spring constants for different contact pairs are assumed to be identical, while there are a number of recent developments to determine non-uniform spring constants from atomistic force fields or experimental information. In particular, the fluctuation matching approaches in coarse-grained modeling can be applied to build more realistic heterogeneous ENMs, using information from an atomistic force field or experimental B-factors. The same type of approaches is further implemented to parameterize heterogeneous structure-based models, which can be considered as a natural extension of ENMs in terms of the potential energy function. In this review, we give an overview of different fluctuation matching methods adopted for ENMs and structure-based models, including an improved formulation and algorithm based on the relative entropy scheme.

摘要

在过去十年中,基于简谐势能函数的弹性网络模型(ENMs)已被证明是理解生物大分子内在动力学的可靠计算模型。在原始的ENMs中,假设不同接触对的弹簧常数是相同的,而最近有许多进展是从原子力场或实验信息中确定非均匀的弹簧常数。特别是,粗粒度建模中的波动匹配方法可以应用于构建更现实的异质ENMs,利用来自原子力场或实验B因子的信息。同样类型的方法被进一步用于参数化基于结构的异质模型,就势能函数而言,该模型可被视为ENMs的自然扩展。在这篇综述中,我们概述了用于ENMs和基于结构的模型的不同波动匹配方法,包括基于相对熵方案的改进公式和算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验