IEEE Trans Neural Netw Learn Syst. 2018 Mar;29(3):657-669. doi: 10.1109/TNNLS.2016.2637881. Epub 2017 Jan 4.
Multiview learning has shown promising potential in many applications. However, most techniques are focused on either view consistency, or view diversity. In this paper, we introduce a novel multiview boosting algorithm, called Boost.SH, that computes weak classifiers independently of each view but uses a shared weight distribution to propagate information among the multiple views to ensure consistency. To encourage diversity, we introduce randomized Boost.SH and show its convergence to the greedy Boost.SH solution in the sense of minimizing regret using the framework of adversarial multiarmed bandits. We also introduce a variant of Boost.SH that combines decisions from multiple experts for recommending views for classification. We propose an expert strategy for multiview learning based on inverse variance, which explores both consistency and diversity. Experiments on biometric recognition, document categorization, multilingual text, and yeast genomic multiview data sets demonstrate the advantage of Boost.SH (85%) compared with other boosting algorithms like AdaBoost (82%) using concatenated views and substantially better than a multiview kernel learning algorithm (74%).
多视图学习在许多应用中显示出了很有前景的潜力。然而,大多数技术要么侧重于视图一致性,要么侧重于视图多样性。在本文中,我们引入了一种新的多视图提升算法,称为 Boost.SH,它独立于每个视图计算弱分类器,但使用共享的权重分布在多个视图之间传播信息,以确保一致性。为了鼓励多样性,我们引入了随机化 Boost.SH,并使用对抗性多臂带臂赌博机的框架证明了它在最小化后悔方面收敛于贪婪 Boost.SH 解。我们还引入了一种从多个专家那里进行决策的 Boost.SH 变体,用于推荐分类的视图。我们提出了一种基于方差倒数的多视图学习专家策略,同时探索了一致性和多样性。在生物特征识别、文档分类、多语言文本和酵母基因组多视图数据集上的实验表明,与其他提升算法(如 AdaBoost,使用连接视图为 82%)相比,Boost.SH(85%)具有优势,并且明显优于多视图核学习算法(74%)。