Suppr超能文献

寨卡病毒RNA依赖性RNA聚合酶的纯化及其在鉴定寨卡小分子抑制剂中的应用。

Purification of Zika virus RNA-dependent RNA polymerase and its use to identify small-molecule Zika inhibitors.

作者信息

Xu Hong-Tao, Hassounah Said A, Colby-Germinario Susan P, Oliveira Maureen, Fogarty Clare, Quan Yudong, Han Yingshan, Golubkov Olga, Ibanescu Ilinca, Brenner Bluma, Stranix Brent R, Wainberg Mark A

机构信息

Jewish General Hospital, McGill University AIDS Centre, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.

Champlain Exploration Pharma Inc., Montreal, Quebec, Canada.

出版信息

J Antimicrob Chemother. 2017 Mar 1;72(3):727-734. doi: 10.1093/jac/dkw514.

Abstract

BACKGROUND

The viral RNA-dependent RNA polymerase (RdRp) enzymes of the Flaviviridae family are essential for viral replication and are logically important targets for development of antiviral therapeutic agents. Zika virus (ZIKV) is a rapidly re-emerging human pathogen for which no vaccine or antiviral agent is currently available.

METHODS

To facilitate development of ZIKV RdRp inhibitors, we have established an RdRp assay using purified recombinant ZIKV NS5 polymerase.

RESULTS

We have shown that both the hepatitis C virus (HCV) nucleoside inhibitor sofosbuvir triphosphate and a pyridoxine-derived non-nucleoside small-molecule inhibitor, DMB213, can act against ZIKV RdRp activity at IC 50 s of 7.3 and 5.2 μM, respectively, in RNA synthesis reactions catalysed by recombinant ZIKV NS5 polymerase. Cell-based assays confirmed the anti-ZIKV activity of sofosbuvir and DMB213 with 50% effective concentrations (EC 50 s) of 8.3 and 4.6 μM, respectively. Control studies showed that DMB213 did not inhibit recombinant HIV-1 reverse transcriptase and showed only very weak inhibition of HIV-1 integrase strand-transfer activity. The S604T substitution in motif B of the ZIKV RdRp, which corresponds to the S282T substitution in motif B of HCV RdRp, which confers resistance to nucleotide inhibitors, also conferred resistance to sofosbuvir triphosphate, but not to DMB213. Enzyme assays showed that DMB213 appears to be competitive with natural nucleoside triphosphate (NTP) substrates.

CONCLUSIONS

Recombinant ZIKV RdRp assays can be useful tools for the screening of both nucleos(t)ide compounds and non-nucleotide metal ion-chelating agents that interfere with ZIKV replication.

摘要

背景

黄病毒科病毒的RNA依赖性RNA聚合酶(RdRp)酶对于病毒复制至关重要,从逻辑上讲是开发抗病毒治疗药物的重要靶点。寨卡病毒(ZIKV)是一种迅速重新出现的人类病原体,目前尚无疫苗或抗病毒药物。

方法

为促进寨卡病毒RdRp抑制剂的开发,我们利用纯化的重组寨卡病毒NS5聚合酶建立了一种RdRp检测方法。

结果

我们已表明,丙型肝炎病毒(HCV)核苷抑制剂索磷布韦三磷酸酯和一种源自吡哆醇的非核苷小分子抑制剂DMB213,在重组寨卡病毒NS5聚合酶催化的RNA合成反应中,分别以7.3和5.2 μM的半数抑制浓度(IC50)作用于寨卡病毒RdRp活性。基于细胞的检测证实了索磷布韦和DMB213的抗寨卡病毒活性,其半数有效浓度(EC50)分别为8.3和4.6 μM。对照研究表明,DMB213不抑制重组HIV-1逆转录酶,对HIV-1整合酶链转移活性的抑制作用也非常微弱。寨卡病毒RdRp基序B中的S604T替代,对应于HCV RdRp基序B中的S282T替代,该替代赋予对核苷酸抑制剂的抗性,也赋予对索磷布韦三磷酸酯的抗性,但对DMB213不产生抗性。酶检测表明,DMB213似乎与天然核苷三磷酸(NTP)底物具有竞争性。

结论

重组寨卡病毒RdRp检测可作为筛选干扰寨卡病毒复制的核苷(酸)化合物和非核苷金属离子螯合剂的有用工具。

相似文献

1
Purification of Zika virus RNA-dependent RNA polymerase and its use to identify small-molecule Zika inhibitors.
J Antimicrob Chemother. 2017 Mar 1;72(3):727-734. doi: 10.1093/jac/dkw514.
2
Discovery of a non-nucleoside RNA polymerase inhibitor for blocking Zika virus replication through in silico screening.
Antiviral Res. 2018 Mar;151:78-86. doi: 10.1016/j.antiviral.2017.12.016. Epub 2017 Dec 21.
4
Non-nucleoside Inhibitors of Zika Virus RNA-Dependent RNA Polymerase.
J Virol. 2020 Oct 14;94(21). doi: 10.1128/JVI.00794-20.
5
Identification and characterization of Zika virus NS5 RNA-dependent RNA polymerase inhibitors.
Int J Antimicrob Agents. 2019 Oct;54(4):502-506. doi: 10.1016/j.ijantimicag.2019.07.010. Epub 2019 Jul 13.
6
Identification of a Pyridoxine-Derived Small-Molecule Inhibitor Targeting Dengue Virus RNA-Dependent RNA Polymerase.
Antimicrob Agents Chemother. 2015 Nov 16;60(1):600-8. doi: 10.1128/AAC.02203-15. Print 2016 Jan.
7
Molecular docking revealed the binding of nucleotide/side inhibitors to Zika viral polymerase solved structures.
SAR QSAR Environ Res. 2018 May;29(5):409-418. doi: 10.1080/1062936X.2018.1454981.
8
Substrate selectivity of Dengue and Zika virus NS5 polymerase towards 2'-modified nucleotide analogues.
Antiviral Res. 2017 Apr;140:25-36. doi: 10.1016/j.antiviral.2016.12.021. Epub 2016 Dec 30.
9
Crystal structure of Zika virus NS5 RNA-dependent RNA polymerase.
Nat Commun. 2017 Mar 27;8:14764. doi: 10.1038/ncomms14764.
10
Adenosine triphosphate analogs can efficiently inhibit the Zika virus RNA-dependent RNA polymerase.
Antiviral Res. 2017 Jan;137:131-133. doi: 10.1016/j.antiviral.2016.11.020. Epub 2016 Nov 27.

引用本文的文献

2
Recent advances in the study of zika virus structure, drug targets, and inhibitors.
Front Pharmacol. 2024 Jul 1;15:1418516. doi: 10.3389/fphar.2024.1418516. eCollection 2024.
3
Repurposing of drugs against methyltransferase as potential Zika virus therapies.
Sci Rep. 2023 May 15;13(1):7870. doi: 10.1038/s41598-023-33341-6.
5
Kill or corrupt: Mechanisms of action and drug-resistance of nucleotide analogues against SARS-CoV-2.
Antiviral Res. 2023 Feb;210:105501. doi: 10.1016/j.antiviral.2022.105501. Epub 2022 Dec 22.
8
Mutation in the RNA-Dependent RNA Polymerase of a Symbiotic Virus Is Associated With the Adaptability of the Viral Host.
Front Microbiol. 2022 Mar 30;13:883436. doi: 10.3389/fmicb.2022.883436. eCollection 2022.
10
Chalcones from Angelica keiskei (ashitaba) inhibit key Zika virus replication proteins.
Bioorg Chem. 2022 Mar;120:105649. doi: 10.1016/j.bioorg.2022.105649. Epub 2022 Jan 31.

本文引用的文献

1
A Screen of FDA-Approved Drugs for Inhibitors of Zika Virus Infection.
Cell Host Microbe. 2016 Aug 10;20(2):259-70. doi: 10.1016/j.chom.2016.07.004. Epub 2016 Jul 28.
2
Zika virus: An emergent neuropathological agent.
Ann Neurol. 2016 Oct;80(4):479-89. doi: 10.1002/ana.24748. Epub 2016 Aug 10.
3
Nucleotide composition of the Zika virus RNA genome and its codon usage.
Virol J. 2016 Jun 8;13:95. doi: 10.1186/s12985-016-0551-1.
4
Zika Virus Disrupts Neural Progenitor Development and Leads to Microcephaly in Mice.
Cell Stem Cell. 2016 Jul 7;19(1):120-6. doi: 10.1016/j.stem.2016.04.017. Epub 2016 May 11.
5
Complete Genome Sequences of Five Zika Virus Isolates.
Genome Announc. 2016 May 12;4(3):e00377-16. doi: 10.1128/genomeA.00377-16.
6
Direct-acting antiviral agents for hepatitis C: structural and mechanistic insights.
Nat Rev Gastroenterol Hepatol. 2016 Jun;13(6):338-51. doi: 10.1038/nrgastro.2016.60. Epub 2016 May 5.
7
Zika virus: An update on epidemiology, pathology, molecular biology, and animal model.
J Med Virol. 2016 Aug;88(8):1291-6. doi: 10.1002/jmv.24563. Epub 2016 May 5.
8
Guillain-Barré syndrome associated with Zika virus infection.
Lancet. 2016 Apr 2;387(10026):1482. doi: 10.1016/S0140-6736(16)30058-7.
9
Structure of the thermally stable Zika virus.
Nature. 2016 May 19;533(7603):425-8. doi: 10.1038/nature17994. Epub 2016 Apr 19.
10
The 3.8 Å resolution cryo-EM structure of Zika virus.
Science. 2016 Apr 22;352(6284):467-70. doi: 10.1126/science.aaf5316. Epub 2016 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验