Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106-9510, United States.
Non-Linearity and Complexity Research Group, System Analytics Research Institute, School of Engineering and Applied Science, Aston University , B4 7ET Birmingham, U.K.
J Phys Chem B. 2017 Feb 9;121(5):942-955. doi: 10.1021/acs.jpcb.6b10705. Epub 2017 Jan 25.
Understanding how biological homochirality may have emerged during chemical evolution remains a challenge for origin of life research. In keeping with this goal, we introduce and solve numerically a kinetic rate equation model of nucleated cooperative enantioselective polymerization in closed systems. The microreversible scheme includes (i) solution-phase racemization of the monomers, (ii) linear chain growth by stepwise monomer attachment, in both nucleation and elongation phases, and (iii) annealing or fusion of homochiral chains. Mechanically induced breakage of the longest chains maintains the system out of equilibrium and drives a breakage-fusion recycling mechanism. Spontaneous mirror symmetry breaking can be achieved starting from small initial enantiomeric excesses due to the intrinsic statistical fluctuations about the idealized racemic composition. The subsequent chiral amplification confirms the model's capacity for absolute asymmetric synthesis, without chiral cross-inhibition and without explicit autocatalysis.
理解生物手性如何在化学进化过程中出现仍然是生命起源研究的一个挑战。为了实现这一目标,我们引入并数值求解了一个封闭体系中核化协同对映选择性聚合的动力速率方程模型。微观可逆方案包括:(i)单体在溶液相中的外消旋化,(ii)在成核和延伸阶段通过逐步单体附加的线性链增长,以及(iii)同手性链的退火或融合。机械诱导最长链的断裂使系统保持在非平衡状态,并驱动断裂-融合循环机制。由于理想的外消旋组成的固有统计波动,从小的初始对映体过量开始,自发的镜像对称破缺是可以实现的。随后的手性放大证实了该模型进行绝对不对称合成的能力,而没有手性交叉抑制,也没有明确的自催化作用。