Kim Hye-Jin, Kwon Sojung, Nam Seo Hee, Jung Jae Woo, Kang Minkyung, Ryu Jihye, Kim Ji Eon, Cheong Jin-Gyu, Cho Chang Yun, Kim Somi, Song Dae-Geun, Kim Yong-Nyun, Kim Tai Young, Jung Min-Kyo, Lee Kyung-Min, Pack Chan-Gi, Lee Jung Weon
Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea.
Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, South Korea.
FASEB J. 2017 Apr;31(4):1461-1481. doi: 10.1096/fj.201600944RR. Epub 2017 Jan 10.
Membrane proteins sense extracellular cues and transduce intracellular signaling to coordinate directionality and speed during cellular migration. They are often localized to specific regions, as with lipid rafts or tetraspanin-enriched microdomains; however, the dynamic interactions of tetraspanins with diverse receptors within tetraspanin-enriched microdomains on cellular surfaces remain largely unexplored. Here, we investigated effects of tetraspan(in) TM4SF5 (transmembrane 4 L6 family member 5)-enriched microdomains (TERMs) on the directionality of cell migration. Physical association of TM4SF5 with epidermal growth factor receptor (EGFR) and integrin α5 was visualized by live fluorescence cross-correlation spectroscopy and higher-resolution microscopy at the leading edge of migratory cells, presumably forming TM4SF5-enriched microdomains. Whereas TM4SF5 and EGFR colocalized at the migrating leading region more than at the rear, TM4SF5 and integrin α5 colocalized evenly throughout cells. Cholesterol depletion and disruption in TM4SF5 post-translational modifications, including -glycosylation and palmitoylation, altered TM4SF5 interactions and cellular localization, which led to less cellular migration speed and directionality in 2- or 3-dimensional conditions. TM4SF5 controlled directional cell migration and invasion, and importantly, these TM4SF5 functions were dependent on cholesterol, TM4SF5 post-translational modifications, and EGFR and integrin α5 activity. Altogether, we showed that TM4SF5 dynamically interacted with EGFR and integrin α5 in migratory cells to control directionality and invasion.-Kim, H.-J., Kwon, S., Nam, S. H., Jung, J. W., Kang, M., Ryu, J., Kim, J. E., Cheong, J.-G., Cho, C. Y., Kim, S., Song, D.-G., Kim, Y.-N., Kim, T. Y., Jung, M.-K., Lee, K.-M., Pack, C.-G., Lee, J. W. Dynamic and coordinated single-molecular interactions at TM4SF5-enriched microdomains guide invasive behaviors in 2- and 3-dimensional environments.
膜蛋白感知细胞外信号并转导细胞内信号,以在细胞迁移过程中协调方向性和速度。它们通常定位于特定区域,如脂筏或富含四跨膜蛋白的微结构域;然而,四跨膜蛋白与细胞表面富含四跨膜蛋白的微结构域内各种受体之间的动态相互作用在很大程度上仍未得到探索。在这里,我们研究了富含四跨膜蛋白(四跨膜蛋白)TM4SF5(跨膜4 L6家族成员5)的微结构域(TERMs)对细胞迁移方向性的影响。通过实时荧光互相关光谱和更高分辨率显微镜观察到,在迁移细胞的前沿,TM4SF5与表皮生长因子受体(EGFR)和整合素α5发生物理缔合,推测形成了富含TM4SF5的微结构域。虽然TM4SF5和EGFR在迁移前沿的共定位多于在后端,但TM4SF5和整合素α5在整个细胞中均匀共定位。胆固醇耗竭以及TM4SF5翻译后修饰(包括糖基化和棕榈酰化)的破坏改变了TM4SF5的相互作用和细胞定位,这导致在二维或三维条件下细胞迁移速度和方向性降低。TM4SF5控制细胞的定向迁移和侵袭,重要的是,这些TM4SF5功能依赖于胆固醇、TM4SF5翻译后修饰以及EGFR和整合素α5的活性。总之,我们表明TM4SF5在迁移细胞中与EGFR和整合素α5动态相互作用,以控制方向性和侵袭。——Kim, H.-J., Kwon, S., Nam, S. H., Jung, J. W., Kang, M., Ryu, J., Kim, J. E., Cheong, J.-G., Cho, C. Y., Kim, S., Song, D.-G., Kim, Y.-N., Kim, T. Y., Jung, M.-K., Lee, K.-M., Pack, C.-G., Lee, J. W. 富含TM4SF5的微结构域处动态且协调的单分子相互作用在二维和三维环境中引导侵袭行为。