Chung Daniel W, Wills Zachary P, Fish Kenneth N, Lewis David A
Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213.
Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213.
Proc Natl Acad Sci U S A. 2017 Jan 24;114(4):E629-E637. doi: 10.1073/pnas.1610077114. Epub 2017 Jan 10.
Working memory requires efficient excitatory drive to parvalbumin-positive (PV) interneurons in the primate dorsolateral prefrontal cortex (DLPFC). Developmental pruning eliminates superfluous excitatory inputs, suggesting that working memory maturation during adolescence requires pruning of excitatory inputs to PV interneurons. Therefore, we tested the hypothesis that excitatory synapses on PV interneurons are pruned during adolescence. The density of excitatory synapses, defined by overlapping vesicular glutamate transporter 1-positive (VGlut1+) and postsynaptic density 95-positive (PSD95+) puncta, on PV interneurons was lower in postpubertal relative to prepubertal monkeys. In contrast, puncta levels of VGlut1 and PSD95 proteins were higher in postpubertal monkeys and positively predicted activity-dependent PV levels, suggesting a greater strength of the remaining synapses after pruning. Because excitatory synapse number on PV interneurons is regulated by erb-b2 receptor tyrosine kinase 4 (ErbB4), whose function is influenced by alternative splicing, we tested the hypothesis that pruning of excitatory synapses on PV interneurons is associated with developmental shifts in ErbB4 expression and/or splicing. Pan-ErbB4 expression did not change, whereas the minor-to-major splice variant ratios increased with age. In cell culture, the major, but not the minor, variant increased excitatory synapse number on PV interneurons and displayed greater kinase activity than the minor variant, suggesting that the effect of ErbB4 signaling in PV interneurons is mediated by alternative splicing. Supporting this interpretation, in monkey DLPFC, higher minor-to-major variant ratios predicted lower PSD95+ puncta density on PV interneurons. Together, our findings suggest that ErbB4 splicing may regulate the pruning of excitatory synapses on PV interneurons during adolescence.
工作记忆需要对灵长类动物背外侧前额叶皮质(DLPFC)中表达小白蛋白(PV)的中间神经元进行有效的兴奋性驱动。发育性修剪会消除多余的兴奋性输入,这表明青春期工作记忆的成熟需要对PV中间神经元的兴奋性输入进行修剪。因此,我们检验了这样一个假设,即PV中间神经元上的兴奋性突触在青春期会被修剪。与青春期前的猴子相比,青春期后的猴子PV中间神经元上兴奋性突触的密度较低,兴奋性突触由囊泡谷氨酸转运体1阳性(VGlut1+)和突触后致密蛋白95阳性(PSD95+)的点状结构重叠来定义。相比之下,青春期后猴子的VGlut1和PSD95蛋白的点状结构水平更高,并且与活动依赖的PV水平呈正相关,这表明修剪后剩余突触的强度更大。由于PV中间神经元上兴奋性突触的数量受erb-b2受体酪氨酸激酶4(ErbB4)调控,其功能受可变剪接影响,我们检验了这样一个假设,即PV中间神经元上兴奋性突触的修剪与ErbB4表达和/或剪接的发育变化有关。泛ErbB4的表达没有变化,而从小剪接变体到大剪接变体的比例随年龄增加。在细胞培养中,大剪接变体而非小剪接变体增加了PV中间神经元上兴奋性突触的数量,并且比小剪接变体表现出更高的激酶活性,这表明PV中间神经元中ErbB4信号的作用是由可变剪接介导的。支持这一解释的是,在猴子的DLPFC中,更高的小剪接变体与大剪接变体的比例预示着PV中间神经元上较低的PSD95+点状结构密度。总之,我们的研究结果表明,ErbB4剪接可能在青春期调节PV中间神经元上兴奋性突触的修剪。