Suppr超能文献

一种使用云计算的快速合成孔径雷达原始数据模拟

A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing.

作者信息

Li Zhixin, Su Dandan, Zhu Haijiang, Li Wei, Zhang Fan, Li Ruirui

机构信息

College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

出版信息

Sensors (Basel). 2017 Jan 8;17(1):113. doi: 10.3390/s17010113.

Abstract

Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4_ speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration.

摘要

合成孔径雷达(SAR)原始数据模拟是雷达系统设计和成像算法研究中的一个基本问题。测绘带宽和分辨率的增长导致数据量和模拟周期显著增加,这可被视为一个综合的数据密集型和计算密集型问题。尽管几种高性能计算(HPC)方法已展示出加速模拟的潜力,但巨大原始数据的输入/输出(I/O)瓶颈并未得到缓解。在本文中,我们提出一种基于云计算的SAR原始数据模拟算法,该算法采用MapReduce模型加速原始数据计算,并利用Hadoop分布式文件系统(HDFS)实现快速I/O访问。MapReduce模型是为原始数据模拟的不规则并行累加而设计的,这大大降低了基于图形处理单元(GPU)的模拟方法的并行效率。此外,从编程模型、HDFS配置和调度方面提出了三种优化策略。实验结果表明在8节点云环境中,基于云计算的算法比基线串行方法实现了4倍加速,且每种优化策略均可提高约20%。这项工作证明所提出的云算法能够解决SAR原始数据模拟中的计算密集型和数据密集型问题,并且易于扩展到大规模计算以实现更高的加速比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a3a/5298686/6a2b13f06c0f/sensors-17-00113-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验