Suppr超能文献

追踪甲型流感病毒聚合酶基因在禽类和猪宿主之间跨物种传播过程中的演变

Tracking the Evolution of Polymerase Genes of Influenza A Viruses during Interspecies Transmission between Avian and Swine Hosts.

作者信息

Karnbunchob Nipawit, Omori Ryosuke, Tessmer Heidi L, Ito Kimihito

机构信息

Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University Sapporo, Japan.

Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido UniversitySapporo, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology AgencyKawaguchi, Japan.

出版信息

Front Microbiol. 2016 Dec 26;7:2118. doi: 10.3389/fmicb.2016.02118. eCollection 2016.

Abstract

Human influenza pandemics have historically been caused by reassortant influenza A viruses using genes from human and avian viruses. This genetic reassortment between human and avian viruses has been known to occur in swine during viral circulation, as swine are capable of circulating both avian and human viruses. Therefore, avian-to-swine transmission of viruses plays an important role in the emergence of new pandemic strains. The amino acids at several positions on PB2, PB1, and PA are known to determine the host range of influenza A viruses. In this paper, we track viral transmission between avian and swine to investigate the evolution on polymerase genes associated with their hosts. We traced viral transmissions between avian and swine hosts by using nucleotide sequences of avian viruses and swine viruses registered in the NCBI GenBank. Using BLAST and the reciprocal best hits technique, we found 32, 33, and 30 pairs of avian and swine nucleotide sequences that may be associated with avian-to-swine transmissions for PB2, PB1, and PA genes, respectively. Then, we examined the amino acid substitutions involved in these sporadic transmissions. On average, avian-to-swine transmission pairs had 5.47, 3.73, and 5.13 amino acid substitutions on PB2, PB1, and PA, respectively. However, amino acid substitutions were distributed over the positions, and few positions showed common substitutions in the multiple transmission events. Statistical tests on the number of repeated amino acid substitutions suggested that no specific positions on PB2 and PA may be required for avian viruses to infect swine. We also found that avian viruses that transmitted to swine tend to process I478V substitutions on PB2 before interspecies transmission events. Furthermore, most mutations occurred after the interspecies transmissions, possibly due to selective viral adaptation to swine.

摘要

从历史上看,人类流感大流行是由甲型流感病毒重配体引起的,这些病毒利用了来自人类和禽流感病毒的基因。已知人类和禽流感病毒之间的这种基因重配会在病毒传播期间在猪体内发生,因为猪能够传播禽流感病毒和人类流感病毒。因此,病毒从禽到猪的传播在新的大流行毒株出现过程中起着重要作用。已知PB2、PB1和PA上几个位置的氨基酸决定了甲型流感病毒的宿主范围。在本文中,我们追踪禽和猪之间的病毒传播,以研究与它们宿主相关的聚合酶基因的进化。我们通过使用NCBI基因库中登记的禽流感病毒和猪流感病毒的核苷酸序列,追踪了禽和猪宿主之间的病毒传播。利用BLAST和相互最佳匹配技术,我们分别发现了32、33和30对可能与PB2、PB1和PA基因从禽到猪传播相关的禽流感病毒和猪流感病毒核苷酸序列。然后,我们检查了这些零星传播中涉及的氨基酸替换。平均而言,从禽到猪的传播对在PB2、PB1和PA上分别有5.47、3.73和5.13个氨基酸替换。然而,氨基酸替换分布在各个位置,在多个传播事件中很少有位置显示出常见的替换。对重复氨基酸替换数量的统计测试表明,禽流感病毒感染猪可能不需要PB2和PA上的特定位置。我们还发现,传播到猪的禽流感病毒在种间传播事件之前往往在PB2上发生I478V替换。此外,大多数突变发生在种间传播之后,这可能是由于病毒对猪的选择性适应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9348/5183616/0ec1ae3dd407/fmicb-07-02118-g001.jpg

相似文献

1
3
Genetic analysis of porcine H3N2 viruses originating in southern China.
J Gen Virol. 1995 Mar;76 ( Pt 3):613-24. doi: 10.1099/0022-1317-76-3-613.
7
Reassortment and mutation of the avian influenza virus polymerase PA subunit overcome species barriers.
J Virol. 2012 Feb;86(3):1750-7. doi: 10.1128/JVI.06203-11. Epub 2011 Nov 16.
9
Emergence and characterisation of pandemic H1N1 influenza viruses in Hungarian swine herds.
Acta Vet Hung. 2013 Mar;61(1):125-34. doi: 10.1556/AVet.2012.059.

引用本文的文献

1
Molecular Markers for Interspecies Transmission of Avian Influenza Viruses in Mammalian Hosts.
Int J Mol Sci. 2017 Dec 13;18(12):2706. doi: 10.3390/ijms18122706.

本文引用的文献

2
Influenza viruses and mRNA splicing: doing more with less.
mBio. 2014 May 13;5(3):e00070-14. doi: 10.1128/mBio.00070-14.
4
Virulence-affecting amino acid changes in the PA protein of H7N9 influenza A viruses.
J Virol. 2014 Mar;88(6):3127-34. doi: 10.1128/JVI.03155-13. Epub 2013 Dec 26.
5
Active surveillance for influenza A virus among swine, midwestern United States, 2009-2011.
Emerg Infect Dis. 2013 Jun;19(6):954-60. doi: 10.3201/eid1906.121637.
6
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.
Mol Biol Evol. 2013 Apr;30(4):772-80. doi: 10.1093/molbev/mst010. Epub 2013 Jan 16.
7
Seroepidemiological evidence of avian influenza A virus transmission to pigs in southern China.
J Clin Microbiol. 2013 Feb;51(2):601-2. doi: 10.1128/JCM.02625-12. Epub 2012 Nov 21.
8
Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks.
Syst Biol. 2012 Dec 1;61(6):1061-7. doi: 10.1093/sysbio/sys062. Epub 2012 Jul 10.
10
A distinct lineage of influenza A virus from bats.
Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4269-74. doi: 10.1073/pnas.1116200109. Epub 2012 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验