Suppr超能文献

柔性体系分子动力学采样的定量评估。

Quantitative Assessment of Molecular Dynamics Sampling for Flexible Systems.

机构信息

Bioinformatics and Computational Biophysics, Center for Medical Biotechnology, University of Duisburg-Essen , Essen D-45117, Germany.

出版信息

J Chem Theory Comput. 2017 Feb 14;13(2):400-414. doi: 10.1021/acs.jctc.6b00823. Epub 2017 Jan 27.

Abstract

Molecular dynamics (MD) simulation is a natural method for the study of flexible molecules but at the same time is limited by the large size of the conformational space of these molecules. We ask by how much the MD sampling quality for flexible molecules can be improved by two means: the use of diverse sets of trajectories starting from different initial conformations to detect deviations between samples and sampling with enhanced methods such as accelerated MD (aMD) or scaled MD (sMD) that distort the energy landscape in controlled ways. To this end, we test the effects of these approaches on MD simulations of two flexible biomolecules in aqueous solution, Met-Enkephalin (5 amino acids) and HIV-1 gp120 V3 (a cycle of 35 amino acids). We assess the convergence of the sampling quantitatively with known, extensive measures of cluster number N and cluster distribution entropy S and with two new quantities, conformational overlap O and density overlap O, both conveniently ranging from 0 to 1. These new overlap measures quantify self-consistency of sampling in multitrajectory MD experiments, a necessary condition for converged sampling. A comprehensive assessment of sampling quality of MD experiments identifies the combination of diverse trajectory sets and aMD as the most efficient approach among those tested. However, analysis of O between conventional and aMD trajectories also reveals that we have not completely corrected aMD sampling for the distorted energy landscape. Moreover, for V3, the courses of N and O indicate that much higher resources than those generally invested today will probably be needed to achieve convergence. The comparative analysis also shows that conventional MD simulations with insufficient sampling can be easily misinterpreted as being converged.

摘要

分子动力学(MD)模拟是研究柔性分子的自然方法,但同时也受到这些分子构象空间过大的限制。我们通过两种方法来提高 MD 对柔性分子采样的质量:使用不同的轨迹集,从不同的初始构象开始,以检测样本之间的偏差;使用增强的方法进行采样,如加速 MD(aMD)或缩放 MD(sMD),这些方法以受控的方式扭曲能量景观。为此,我们在水溶液中对两种柔性生物分子,即 Met-Enkephalin(5 个氨基酸)和 HIV-1 gp120 V3(35 个氨基酸的环)进行 MD 模拟,测试这些方法的效果。我们使用已知的、广泛的聚类数 N 和聚类分布熵 S 以及两个新的量,构象重叠 O 和密度重叠 O,来定量评估采样的收敛性,这两个新的重叠量方便地在 0 到 1 之间取值。这些新的重叠量可以定量地衡量多轨迹 MD 实验中采样的自洽性,这是收敛采样的必要条件。对 MD 实验采样质量的综合评估确定了多样化轨迹集和 aMD 的组合是测试中最有效的方法。然而,对 O 的分析也表明,我们还没有完全纠正 aMD 采样中由于扭曲的能量景观所带来的偏差。此外,对于 V3,N 和 O 的轨迹表明,为了实现收敛,可能需要比目前通常投入的资源更高。比较分析还表明,采样不足的常规 MD 模拟很容易被误解为已经收敛。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验