IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Apr;64(4):749-760. doi: 10.1109/TUFFC.2017.2653063. Epub 2017 Jan 16.
This paper presents the theory of the k -space method generalized to model elastic wave propagation in heterogeneous anisotropic media. The k -space methods are promising time integration techniques giving, in conjunction with collocation spectral methods, accurate and efficient numerical schemes for problems in heterogeneous media. In this paper, the k -space operator is derived in a spatially continuous form using the Fourier analysis of the displacement formalism of elastodynamics. An efficient numerical algorithm is then constructed by applying a Fourier collocation spectral method, leading to define the discrete k -space scheme. The proposed method is temporally exact for homogeneous media, unconditionally stable for heterogeneous media, and also allows larger time steps without loss of accuracy. Implementation of the method is discussed in detail. The method is validated through a set of numerical tests. The numerical results show the efficacy of the method compared with the conventional schemes.
本文提出了将 k 空间方法推广到各向异性非均匀介质中弹性波传播模型的理论。k 空间方法是很有前途的时间积分技术,与配置谱方法相结合,可以为非均匀介质中的问题提供精确高效的数值方案。在本文中,使用弹性动力学的位移形式的傅里叶分析,推导出了连续空间形式的 k 空间算子。然后通过应用傅里叶配置谱方法构建了一个有效的数值算法,从而定义了离散的 k 空间方案。所提出的方法对于均匀介质是时间精确的,对于非均匀介质是无条件稳定的,并且还允许更大的时间步长而不会降低精度。详细讨论了该方法的实现。通过一组数值测试验证了该方法的有效性。数值结果表明了与传统方案相比,该方法的有效性。