Novak Andrew R, Bennett Kyle J M, Fransen Job, Dascombe Ben J
a Applied Sports Science and Exercise Testing Laboratory, School of Environmental and Life Sciences, Faculty of Science and Information Technology , University of Newcastle , Ourimbah , Australia.
b Sport and Exercise Science, Faculty of Health , University of Technology Sydney , Moore Park , Australia.
J Sports Sci. 2018 Jan;36(1):71-78. doi: 10.1080/02640414.2017.1280611. Epub 2017 Jan 20.
This study adopted a multidimensional approach to performance prediction within Olympic distance cross-country mountain biking (XCO-MTB). Twelve competitive XCO-MTB cyclists (VOmax 60.8 ± 6.7 ml · kg· min) completed an incremental cycling test, maximal hand grip strength test, cycling power profile (maximal efforts lasting 6-600 s), decision-making test and an individual XCO-MTB time-trial (34.25 km). A hierarchical approach using multiple linear regression analyses was used to develop predictive models of performance across 10 circuit subsections and the total time-trial. The strongest model to predict overall time-trial performance achieved prediction accuracy of 127.1 s across 6246.8 ± 452.0 s (adjusted R = 0.92; P < 0.01). This model included VOmax relative to total cycling mass, maximal mean power across 5 and 30 s, peak left hand grip strength, and response time for correct decisions in the decision-making task. A range of factors contributed to the models for each individual subsection of the circuit with varying predictive strength (adjusted R: 0.62-0.97; P < 0.05). The high prediction accuracy for the total time-trial supports that a multidimensional approach should be taken to develop XCO-MTB performance. Additionally, individual models for circuit subsections may help guide training practices relative to the specific trail characteristics of various XCO-MTB circuits.
本研究采用多维度方法对奥运距离越野山地自行车(XCO-MTB)的运动表现进行预测。12名竞技XCO-MTB自行车运动员(最大摄氧量60.8±6.7毫升·千克·分钟)完成了递增式自行车测试、最大握力测试、自行车功率曲线测试(持续6 - 600秒的最大努力)、决策测试以及个人XCO-MTB计时赛(34.25千米)。使用多元线性回归分析的分层方法来建立10个赛段子部分和总计时赛成绩的预测模型。预测总计时赛成绩的最强模型在6246.8±452.0秒的范围内实现了127.1秒的预测精度(调整后R = 0.92;P < 0.01)。该模型包括相对于总骑行质量的最大摄氧量、5秒和30秒内的最大平均功率、左手最大握力以及决策任务中正确决策的反应时间。一系列因素对赛段各子部分的模型有贡献,预测强度各不相同(调整后R:0.62 - 0.97;P < 0.05)。总计时赛的高预测精度支持应采用多维度方法来提升XCO-MTB运动表现。此外,赛段子部分的个体模型可能有助于根据各种XCO-MTB赛段的特定赛道特征来指导训练实践。