Suppr超能文献

整合多种受体构象对接和多维定量构效关系以提高结合亲和力预测的准确性。

Integrating Multiple Receptor Conformation Docking and Multi Dimensional QSAR for Enhancing Accuracy of Binding Affinity Prediction.

作者信息

Radhika Vangala, Jaraf Hassan A, Kanth Sivan S, Vijjulatha Manga

机构信息

Department of Chemistry, Molecular Modeling and Medicinal Chemistry Group, University College of Science, Osmania University, Hyderabad - 500007, India.

Department of Chemistry, University of Basrah, Basrah, Iraq.

出版信息

Curr Comput Aided Drug Des. 2017;13(2):127-142. doi: 10.2174/1573409913666170119115841.

Abstract

BACKGROUND

The accuracy of molecular conformation for Quantitative Structure Activity Relationship (QSAR) studies is an important criteria, and the most favourable bioactive conformer selection is a tough task. Correct ligand alignment as input for 3D-QSAR is an important step that is prone to human biases. Multiple-dimensional QSAR (mQSAR) approach provides a promising alternative to classic 3D-QSAR for drug discovery purposes.

OBJECTIVE

Obtaining ligand conformations from multiple receptor conformation docking (MRCD) will reduce the margin of error by incorporating the receptor based alignment of ligand conformations. To validate this assumption we performed 6D QSAR studies on reported HIV-1 protease inhibitors using Quasar 6.0.

MATERIALS & METHOD: The ensemble of conformation was obtained by MRCD of ligands in thirteen crystal structures of HIV-1 protease. 6D QSAR model was built using 65 cyclic urea molecules reported as HIV-1 protease inhibitors. Predictive ability of the model was validated using 35 cyclic urea molecules as test set. External predictive ability of the model was evaluated using a set of 24 HIV-1 protease inhibitors having varied structural scaffold.

RESULT

6D QSAR model obtained showed a reliable cross-validated r2(q2) of 0.899, r2(classic) of 0.908 and yielded a predictive r2 (p2) of 0.527. The ratio of q2/r2 was 0.991 and p2/q2 was 0.586 for external test set.

CONCLUSION

The QSAR results invariably suggest that our approach is suitable for the identification of molecules having HIV-1 protease inhibitory potency. The underlying philosophy combines flexible docking for the identification of the binding modes and 6D QSAR for their quantification.

摘要

背景

定量构效关系(QSAR)研究中分子构象的准确性是一个重要标准,而选择最有利的生物活性构象是一项艰巨的任务。正确的配体比对作为3D-QSAR的输入是重要的一步,且容易出现人为偏差。多维QSAR(mQSAR)方法为药物发现目的提供了一种有前景的替代经典3D-QSAR的方法。

目的

通过多受体构象对接(MRCD)获得配体构象,将通过纳入基于受体的配体构象比对来减少误差范围。为了验证这一假设,我们使用Quasar 6.0对已报道的HIV-1蛋白酶抑制剂进行了6D QSAR研究。

材料与方法

通过HIV-1蛋白酶的13种晶体结构中配体的MRCD获得构象集合。使用报道为HIV-1蛋白酶抑制剂的65个环脲分子建立6D QSAR模型。使用35个环脲分子作为测试集验证模型的预测能力。使用一组具有不同结构支架的24种HIV-1蛋白酶抑制剂评估模型的外部预测能力。

结果

获得的6D QSAR模型显示出可靠的交叉验证r2(q2)为0.899,r2(经典)为0.908,预测r2(p2)为0.527。外部测试集的q2/r2比率为0.991,p2/q2为0.586。

结论

QSAR结果始终表明我们的方法适用于鉴定具有HIV-1蛋白酶抑制效力的分子。其基本原理结合了用于鉴定结合模式的柔性对接和用于定量的6D QSAR。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验