Hollingsworth Ryan L, Bheemaraju Amarnath, Lenca Nicole, Lord Richard L, Groysman Stanislav
Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA.
Dalton Trans. 2017 May 2;46(17):5605-5616. doi: 10.1039/c6dt04532d.
The reaction of a dinucleating bis(iminopyridine) ligand L bearing a xanthene linker (L = N,N'-(2,7-di-tert-butyl-9,9-dimethyl-9H-xanthene-4,5-diyl)bis(1-(pyridin-2-yl)methanimine)) with Ni(COD)(DPA) (COD = cyclooctadiene, DPA = diphenylacetylene) leads to the formation of a new dinuclear complex Ni(L)(DPA). Ni(L)(DPA) can also be obtained in a one-pot reaction involving Ni(COD), DPA and L. The X-ray structure of Ni(L)(DPA) reveals two square-planar Ni centers bridged by a DPA ligand. DFT calculations suggest that this species features Ni centers antiferromagnetically coupled to each other and their iminopyridine ligand radicals. Treatment of Ni(L)(DPA) with one equivalent of ethyl propiolate (HCCCOEt) forms the Ni(L)(HCCCOEt) complex. Addition of the second equivalent of ethyl propiolate leads to the observation of cyclotrimerised products by H NMR spectroscopy. Carrying out the reaction under catalytic conditions (1 mol% of Ni(L)(DPA), 24 h, room temperature) transforms 89% of the substrate, forming primarily benzene products (triethyl benzene-1,2,4-tricarboxylate and triethyl benzene-1,3,5-tricarboxylate) in 68% yield, in a ca. 5 : 1 relative ratio. Increasing catalyst loading to 5 mol% leads to the full conversion of ethyl propiolate to benzene products; no cyclotetramerisation products were observed. In contrast, the reaction is significantly more sluggish with methyl propargyl ether. Using 1 mol% of the catalyst, only 25% conversion of methyl propargyl ether was observed within 24 h at room temperature. Furthermore, methyl propargyl ether demonstrates the formation of cyclooctatetraenes in significant amounts at a low catalyst concentration, whereas a higher catalyst concentration (5 mol%) leads to benzene products exclusively. Density functional theory was used to provide insight into the reaction mechanism, including structures of putative dinuclear metallocyclopentadiene and metallocycloheptatriene intermediates.
带有氧杂蒽连接基的双核双(亚氨基吡啶)配体L(L = N,N'-(2,7-二叔丁基-9,9-二甲基-9H-氧杂蒽-4,5-二基)双(1-(吡啶-2-基)甲亚胺))与Ni(COD)(DPA)(COD = 环辛二烯,DPA = 二苯乙炔)反应生成新的双核配合物Ni(L)(DPA)。Ni(L)(DPA)也可以通过涉及Ni(COD)、DPA和L的一锅法反应得到。Ni(L)(DPA)的X射线结构显示两个由DPA配体桥连的平面正方形Ni中心。密度泛函理论计算表明,该物种的Ni中心彼此反铁磁耦合,并且与它们的亚氨基吡啶配体自由基耦合。用一当量的丙炔酸乙酯(HCCCOEt)处理Ni(L)(DPA)形成Ni(L)(HCCCOEt)配合物。加入第二当量的丙炔酸乙酯会通过1H NMR光谱观察到环三聚产物。在催化条件下(1 mol%的Ni(L)(DPA),24小时,室温)进行反应,89%的底物发生转化,主要形成苯产物(三乙基苯-1,2,4-三羧酸酯和三乙基苯-1,3,5-三羧酸酯),产率为68%,相对比例约为5∶1。将催化剂负载量增加到5 mol%会使丙炔酸乙酯完全转化为苯产物;未观察到环四聚产物。相比之下,与甲基炔丙基醚的反应明显更缓慢。使用1 mol%的催化剂,在室温下24小时内仅观察到25%的甲基炔丙基醚转化。此外,甲基炔丙基醚在低催化剂浓度下会大量形成环辛四烯,而较高催化剂浓度(5 mol%)则仅生成苯产物。使用密度泛函理论来深入了解反应机理,包括假定的双核金属环戊二烯和金属环庚三烯中间体的结构。