Suppr超能文献

一种用于提高人工耳蜗模拟中声码语音清晰度的深度去噪自动编码器方法。

A Deep Denoising Autoencoder Approach to Improving the Intelligibility of Vocoded Speech in Cochlear Implant Simulation.

作者信息

Lai Ying-Hui, Chen Fei, Wang Syu-Siang, Lu Xugang, Tsao Yu, Lee Chin-Hui

出版信息

IEEE Trans Biomed Eng. 2017 Jul;64(7):1568-1578. doi: 10.1109/TBME.2016.2613960. Epub 2016 Sep 27.

Abstract

OBJECTIVE

In a cochlear implant (CI) speech processor, noise reduction (NR) is a critical component for enabling CI users to attain improved speech perception under noisy conditions. Identifying an effective NR approach has long been a key topic in CI research.

METHOD

Recently, a deep denoising autoencoder (DDAE) based NR approach was proposed and shown to be effective in restoring clean speech from noisy observations. It was also shown that DDAE could provide better performance than several existing NR methods in standardized objective evaluations. Following this success with normal speech, this paper further investigated the performance of DDAE-based NR to improve the intelligibility of envelope-based vocoded speech, which simulates speech signal processing in existing CI devices.

RESULTS

We compared the performance of speech intelligibility between DDAE-based NR and conventional single-microphone NR approaches using the noise vocoder simulation. The results of both objective evaluations and listening test showed that, under the conditions of nonstationary noise distortion, DDAE-based NR yielded higher intelligibility scores than conventional NR approaches.

CONCLUSION AND SIGNIFICANCE

This study confirmed that DDAE-based NR could potentially be integrated into a CI processor to provide more benefits to CI users under noisy conditions.

摘要

目的

在人工耳蜗(CI)言语处理器中,降噪(NR)是使CI使用者在嘈杂环境下提高言语感知能力的关键组成部分。确定一种有效的NR方法长期以来一直是CI研究中的一个关键课题。

方法

最近,提出了一种基于深度去噪自动编码器(DDAE)的NR方法,该方法被证明在从噪声观测中恢复纯净语音方面是有效的。在标准化客观评估中,DDAE也被证明比几种现有的NR方法具有更好的性能。继在正常语音方面取得这一成功之后,本文进一步研究了基于DDAE的NR在提高基于包络的声码化语音清晰度方面的性能,这种语音模拟了现有CI设备中的语音信号处理。

结果

我们使用噪声声码器模拟比较了基于DDAE的NR和传统单麦克风NR方法在语音清晰度方面的性能。客观评估和听力测试的结果均表明,在非平稳噪声失真条件下,基于DDAE的NR比传统NR方法产生更高的清晰度得分。

结论与意义

本研究证实,基于DDAE的NR有可能集成到CI处理器中,以便在嘈杂条件下为CI使用者提供更多益处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验