Suppr超能文献

源端学习,目标端优化:一种基于随机森林的模型迁移学习框架。

Learn on Source, Refine on Target: A Model Transfer Learning Framework with Random Forests.

作者信息

Segev Noam, Harel Maayan, Mannor Shie, Crammer Koby, El-Yaniv Ran

出版信息

IEEE Trans Pattern Anal Mach Intell. 2017 Sep;39(9):1811-1824. doi: 10.1109/TPAMI.2016.2618118. Epub 2016 Oct 18.

Abstract

We propose novel model transfer-learning methods that refine a decision forest model M learned within a "source" domain using a training set sampled from a "target" domain, assumed to be a variation of the source. We present two random forest transfer algorithms. The first algorithm searches greedily for locally optimal modifications of each tree structure by trying to locally expand or reduce the tree around individual nodes. The second algorithm does not modify structure, but only the parameter (thresholds) associated with decision nodes. We also propose to combine both methods by considering an ensemble that contains the union of the two forests. The proposed methods exhibit impressive experimental results over a range of problems.

摘要

我们提出了新颖的模型迁移学习方法,该方法使用从“目标”域采样的训练集来优化在“源”域中学习到的决策森林模型M,假设目标域是源域的一个变体。我们提出了两种随机森林迁移算法。第一种算法通过尝试在各个节点周围局部扩展或缩减树,贪婪地搜索每个树结构的局部最优修改。第二种算法不修改结构,仅修改与决策节点相关联的参数(阈值)。我们还建议通过考虑包含两个森林并集的集成来结合这两种方法。所提出的方法在一系列问题上展现出令人印象深刻的实验结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验