IEEE Trans Cybern. 2017 Apr;47(4):908-919. doi: 10.1109/TCYB.2016.2533393. Epub 2016 Mar 8.
In this paper, for a class of switched large-scale uncertain nonlinear systems with unknown control coefficients and unmeasurable states, a switched-dynamic-surface-based decentralized adaptive neural output-feedback control approach is developed. The approach proposed extends the classical dynamic surface control (DSC) technique for nonswitched version to switched version by designing switched first-order filters, which overcomes the problem of multiple "explosion of complexity." Also, a dual common coordinates transformation of all subsystems is exploited to avoid individual coordinate transformations for subsystems that are required when applying the backstepping recursive design scheme. Nussbaum-type functions are utilized to handle the unknown control coefficients, and a switched neural network observer is constructed to estimate the unmeasurable states. Combining with the average dwell time method and backstepping and the DSC technique, decentralized adaptive neural controllers of subsystems are explicitly designed. It is proved that the approach provided can guarantee the semiglobal uniformly ultimately boundedness for all the signals in the closed-loop system under a class of switching signals with average dwell time, and the tracking errors to a small neighborhood of the origin. A two inverted pendulums system is provided to demonstrate the effectiveness of the method proposed.
在本文中,针对一类具有未知控制系数和不可测状态的切换大不确定非线性系统,提出了一种基于切换动态面的分散自适应神经网络输出反馈控制方法。所提出的方法通过设计切换一阶滤波器,将经典的非切换版本的动态面控制(DSC)技术扩展到切换版本,克服了多次“复杂性爆炸”的问题。此外,利用所有子系统的对偶公共坐标变换来避免应用反推递推设计方案时对子系统进行单独的坐标变换。利用 Nussbaum 型函数来处理未知的控制系数,并构建切换神经网络观测器来估计不可测状态。结合平均驻留时间方法和反推及 DSC 技术,显式设计了子系统的分散自适应神经网络控制器。证明了在一类具有平均驻留时间的切换信号下,所提出的方法能够保证闭环系统中所有信号的半全局一致有界性,并使跟踪误差收敛到原点的一个小邻域内。提供了一个双倒立摆系统来验证所提出方法的有效性。