Suppr超能文献

温度对组织超声破碎空化固有阈值的影响。

Effects of Temperature on the Histotripsy Intrinsic Threshold for Cavitation.

作者信息

Vlaisavljevich Eli, Xu Zhen, Maxwell Adam, Mancia Lauren, Zhang Xi, Lin Kuang-Wei, Duryea Alexander, Sukovich Jonathan, Hall Tim, Johnsen Eric, Cain Charles

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Aug;63(8):1064-1077. doi: 10.1109/TUFFC.2016.2565612. Epub 2016 May 10.

Abstract

Histotripsy is an ultrasound ablation method that depends on the initiation of a dense cavitation bubble cloud to fractionate soft tissue. Previous work has demonstrated that a cavitation cloud can be formed by a single acoustic pulse with one high amplitude negative cycle, when the negative pressure amplitude exceeds a threshold intrinsic to the medium. The intrinsic thresholds in soft tissues and tissue phantoms that are water-based are similar to the intrinsic threshold of water over an experimentally verified frequency range of 0.3-3 MHz. Previous work studying the histotripsy intrinsic threshold has been limited to experiments performed at room temperature (~20°C). In this study, we investigate the effects of temperature on the histotripsy intrinsic threshold in water, which is essential to accurately predict the intrinsic thresholds expected over the full range of in vivo therapeutic temperatures. Based on previous work studying the histotripsy intrinsic threshold and classical nucleation theory, we hypothesize that the intrinsic threshold will decrease with increasing temperature. To test this hypothesis, the intrinsic threshold in water was investigated both experimentally and theoretically. The probability of generating cavitation bubbles was measured by applying a single pulse with one high amplitude negative cycle at 1 MHz to distilled, degassed water at temperatures ranging from 10°C-90°C. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured vs. pressure amplitude. The results indicate that the intrinsic threshold (the negative pressure at which the cavitation probability=0.5) significantly decreases with increasing temperature, showing a nearly linear decreasing trend from 29.8±0.4 MPa at 10˚C to 14.9±1.4 MPa at 90˚C. Overall, the results of this study support our hypothesis that the intrinsic threshold is highly dependent upon the temperature of the medium, which may allow for better predictions of cavitation generation at body temperature in vivo and at the elevated temperatures commonly seen in high intensity focused ultrasound (HIFU) regimes.

摘要

组织粉碎术是一种超声消融方法,它依靠密集空化泡云的产生来破碎软组织。先前的研究表明,当负压幅值超过介质固有的阈值时,单个具有一个高幅值负周期的声脉冲就能形成空化云。在0.3 - 3 MHz这个经过实验验证的频率范围内,软组织和水基组织仿体中的固有阈值与水的固有阈值相似。先前关于组织粉碎术固有阈值的研究仅限于在室温(约20°C)下进行的实验。在本研究中,我们探究了温度对水中组织粉碎术固有阈值的影响,这对于准确预测在体内治疗的整个温度范围内预期的固有阈值至关重要。基于先前对组织粉碎术固有阈值的研究和经典成核理论,我们假设固有阈值会随着温度升高而降低。为了验证这一假设,我们从实验和理论两方面研究了水中的固有阈值。通过向温度范围为10°C至90°C的蒸馏脱气水中施加一个1 MHz的具有一个高幅值负周期的单脉冲,来测量产生空化泡的概率。通过被动空化检测和高速摄影来检测和表征空化现象,据此测量空化概率与压力幅值的关系。结果表明,固有阈值(空化概率 = 0.5时的负压)随着温度升高而显著降低,呈现出从10˚C时的29.8±0.4 MPa到90˚C时的14.9±1.4 MPa的近似线性下降趋势。总体而言,本研究结果支持了我们的假设,即固有阈值高度依赖于介质的温度,这可能有助于更好地预测体内体温以及高强度聚焦超声(HIFU)治疗中常见的高温下的空化产生情况。

相似文献

1
Effects of Temperature on the Histotripsy Intrinsic Threshold for Cavitation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Aug;63(8):1064-1077. doi: 10.1109/TUFFC.2016.2565612. Epub 2016 May 10.
2
Effects of ultrasound frequency and tissue stiffness on the histotripsy intrinsic threshold for cavitation.
Ultrasound Med Biol. 2015 Jun;41(6):1651-67. doi: 10.1016/j.ultrasmedbio.2015.01.028. Epub 2015 Mar 9.
3
Effects of f-number on the histotripsy intrinsic threshold and cavitation bubble cloud behavior.
Phys Med Biol. 2017 Feb 21;62(4):1269-1290. doi: 10.1088/1361-6560/aa54c7. Epub 2016 Dec 20.
5
Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior.
Phys Med Biol. 2015 Mar 21;60(6):2271-92. doi: 10.1088/0031-9155/60/6/2271. Epub 2015 Feb 26.
6
Bubble cloud characteristics and ablation efficiency in dual-frequency intrinsic threshold histotripsy.
Phys Med Biol. 2023 Nov 6;68(22):225006. doi: 10.1088/1361-6560/ad00a5.
8
Histotripsy-induced cavitation cloud initiation thresholds in tissues of different mechanical properties.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Feb;61(2):341-52. doi: 10.1109/TUFFC.2014.6722618.

引用本文的文献

1
Process, dynamics and bioeffects of acoustic droplet vaporization induced by dual-frequency focused ultrasound.
Ultrason Sonochem. 2025 Feb;113:107234. doi: 10.1016/j.ultsonch.2025.107234. Epub 2025 Jan 20.
3
Histotripsy: A Method for Mechanical Tissue Ablation with Ultrasound.
Annu Rev Biomed Eng. 2024 Jul;26(1):141-167. doi: 10.1146/annurev-bioeng-073123-022334. Epub 2024 Jun 20.
4
The histotripsy spectrum: differences and similarities in techniques and instrumentation.
Int J Hyperthermia. 2023;40(1):2233720. doi: 10.1080/02656736.2023.2233720.
5
Enhancement of Boiling Histotripsy by Steering the Focus Axially During the Pulse Delivery.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Aug;70(8):865-875. doi: 10.1109/TUFFC.2023.3286759. Epub 2023 Aug 2.
6
Interdependence of Tissue Temperature, Cavitation, and Displacement Imaging During Focused Ultrasound Nerve Sonication.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Jul;70(7):600-612. doi: 10.1109/TUFFC.2023.3280455. Epub 2023 Jun 29.
7
Mechanisms of nuclei growth in ultrasound bubble nucleation.
Ultrason Sonochem. 2022 Aug;88:106091. doi: 10.1016/j.ultsonch.2022.106091. Epub 2022 Jul 6.
8
Pancreatic Ductal Adenocarcinoma: Current and Emerging Therapeutic Uses of Focused Ultrasound.
Cancers (Basel). 2022 May 24;14(11):2577. doi: 10.3390/cancers14112577.
9
Ultrastructural Analysis of Volumetric Histotripsy Bio-effects in Large Human Hematomas.
Ultrasound Med Biol. 2021 Sep;47(9):2608-2621. doi: 10.1016/j.ultrasmedbio.2021.05.002. Epub 2021 Jun 9.
10
Focused Ultrasound Mechanical Disruption of Ex Vivo Rat Tendon.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Sep;68(9):2981-2986. doi: 10.1109/TUFFC.2021.3075375. Epub 2021 Aug 27.

本文引用的文献

1
The role of positive and negative pressure on cavitation nucleation in nanodroplet-mediated histotripsy.
Phys Med Biol. 2016 Jan 21;61(2):663-82. doi: 10.1088/0031-9155/61/2/663. Epub 2015 Dec 30.
2
Effects of Thermal Preconditioning on Tissue Susceptibility to Histotripsy.
Ultrasound Med Biol. 2015 Nov;41(11):2938-54. doi: 10.1016/j.ultrasmedbio.2015.07.016. Epub 2015 Aug 28.
3
Numerical modeling of bubble dynamics in viscoelastic media with relaxation.
Phys Fluids (1994). 2015 Jun;27(6):063103. doi: 10.1063/1.4922598. Epub 2015 Jun 18.
4
Effects of Ultrasound Frequency on Nanodroplet-Mediated Histotripsy.
Ultrasound Med Biol. 2015 Aug;41(8):2135-47. doi: 10.1016/j.ultrasmedbio.2015.04.007. Epub 2015 May 7.
5
Effects of ultrasound frequency and tissue stiffness on the histotripsy intrinsic threshold for cavitation.
Ultrasound Med Biol. 2015 Jun;41(6):1651-67. doi: 10.1016/j.ultrasmedbio.2015.01.028. Epub 2015 Mar 9.
6
Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior.
Phys Med Biol. 2015 Mar 21;60(6):2271-92. doi: 10.1088/0031-9155/60/6/2271. Epub 2015 Feb 26.
7
Development of nanodroplets for histotripsy-mediated cell ablation.
Mol Pharm. 2014 Oct 6;11(10):3684-95. doi: 10.1021/mp500419w. Epub 2014 Sep 15.
8
Synthesis of monopolar ultrasound pulses for therapy: the frequency-compounding transducer.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Jul;61(7):1123-36. doi: 10.1109/TUFFC.2014.3012.
9
Ultrasound-guided tissue fractionation by high intensity focused ultrasound in an in vivo porcine liver model.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8161-6. doi: 10.1073/pnas.1318355111. Epub 2014 May 19.
10
Histotripsy-induced cavitation cloud initiation thresholds in tissues of different mechanical properties.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Feb;61(2):341-52. doi: 10.1109/TUFFC.2014.6722618.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验